
Lian-Mao Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7541781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancementâ€Mode Fieldâ€Effect Transistors and Highâ€Speed Integrated Circuits Based on Aligned Carbon Nanotube Films. Advanced Functional Materials, 2022, 32, 2104539.	7.8	25
2	The role of Cu crystallographic orientations towards growing superclean graphene on meter-sized scale. Nano Research, 2022, 15, 3775-3780.	5.8	3
3	Deep‣ubmicrometer Complementary Metalâ€Oxideâ€Semiconductor Transistors Based on Carbon Nanotube Films. Advanced Electronic Materials, 2022, 8, 2100751.	2.6	15
4	Intrinsic Wettability in Pristine Graphene. Advanced Materials, 2022, 34, e2103620.	11.1	28
5	Surface-bulk coupling in a Bi2Te3 nanoplate grown by van der Waals epitaxy. Nanoscale, 2022, , .	2.8	0
6	Intrinsic Wettability in Pristine Graphene (Adv. Mater. 6/2022). Advanced Materials, 2022, 34, .	11.1	5
7	Giant Negative Differential Resistance Effect Caused by Cutting off Acceptable Quantum States in Carbon Nanotube Tunneling Devices. Advanced Electronic Materials, 2022, 8, .	2.6	3
8	Physics and applications of nanotubes. Journal of Applied Physics, 2022, 131, .	1.1	9
9	Verticalâ€Grapheneâ€Reinforced Titanium Alloy Bipolar Plates in Fuel Cells. Advanced Materials, 2022, 34, e2110565.	11.1	31
10	Wafer-scale fabrication of carbon-nanotube-based CMOS transistors and circuits with high thermal stability. Nano Research, 2022, 15, 9875-9880.	5.8	6
11	Toward Epitaxial Growth of Misorientation-Free Graphene on Cu(111) Foils. ACS Nano, 2022, 16, 285-294.	7.3	40
12	Strain-Free Layered Semiconductors for 2D Transistors with On-State Current Density Exceeding 1.3 mA μm ^{–1} . Nano Letters, 2022, 22, 3770-3776.	4.5	17
13	One-dimensional perovskite-based Li-ion battery anodes with high capacity and cycling stability. Journal of Energy Chemistry, 2022, 72, 73-80.	7.1	8
14	Slipâ€Lineâ€Guided Growth of Graphene. Advanced Materials, 2022, 34, e2201188.	11.1	7
15	Toward batch synthesis of high-quality graphene by cold-wall chemical vapor deposition approach. Nano Research, 2022, 15, 9683-9688.	5.8	6
16	Graphene Membranes for Multiâ€Dimensional Electron Microscopy Imaging: Preparation, Application, and Prospect. Advanced Functional Materials, 2022, 32, .	7.8	4
17	Comparative study of the extraction selectivity of PFO-BPy and PCz for small to large diameter single-walled carbon nanotubes. Nano Research, 2022, 15, 8479-8485.	5.8	10
18	Light-Controlled Reconfigurable Optical Synapse Based on Carbon Nanotubes/2D Perovskite Heterostructure for Image Recognition. ACS Applied Materials & Interfaces, 2022, 14, 28221-28229.	4.0	6

Lian-Mao Peng

#	Article	IF	CITATIONS
19	Twin physically unclonable functions based on aligned carbon nanotube arrays. Nature Electronics, 2022, 5, 424-432.	13.1	19
20	Suppression of leakage current in carbon nanotube field-effect transistors. Nano Research, 2021, 14, 976-981.	5.8	21
21	CNTFET Technology for RF Applications: Review and Future Perspective. IEEE Journal of Microwaves, 2021, 1, 275-287.	4.9	23
22	Monochromatic Carbon Nanotube Tangles Grown by Microfluidic Switching between Chaos and Fractals. ACS Nano, 2021, 15, 5129-5137.	7.3	5
23	Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode. Journal of Physical Chemistry Letters, 2021, 12, 2886-2891.	2.1	2
24	Broadband Photodetectors: Broadband Bi ₂ O ₂ Se Photodetectors from Infrared to Terahertz (Adv. Funct. Mater. 14/2021). Advanced Functional Materials, 2021, 31, 2170093.	7.8	3
25	Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nature Communications, 2021, 12, 2391.	5.8	92
26	Highly Temperatureâ€Stable Carbon Nanotube Transistors and Gigahertz Integrated Circuits for Cryogenic Electronics. Advanced Electronic Materials, 2021, 7, 2100202.	2.6	13
27	Host–Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2021, 143, 10120-10130.	6.6	44
28	Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes. ACS Applied Materials & Interfaces, 2021, 13, 29926-29935.	4.0	23
29	Radiofrequency transistors based on aligned carbon nanotube arrays. Nature Electronics, 2021, 4, 405-415.	13.1	67
30	Hot-Carrier Cooling in High-Quality Graphene Is Intrinsically Limited by Optical Phonons. ACS Nano, 2021, 15, 11285-11295.	7.3	43
31	High-yield and low-cost separation of high-purity semiconducting single-walled carbon nanotubes with closed-loop recycling of raw materials and solvents. Nano Research, 2021, 14, 4281-4287.	5.8	11
32	Charge trap-based carbon nanotube transistor for synaptic function mimicking. Nano Research, 2021, 14, 4258-4263.	5.8	16
33	2D Bi ₂ O ₂ Se: An Emerging Material Platform for the Next-Generation Electronic Industry. Accounts of Materials Research, 2021, 2, 842-853.	5.9	39
34	Carbon Nanotube Based Radio Frequency Transistors for K-Band Amplifiers. ACS Applied Materials & Interfaces, 2021, 13, 37475-37482.	4.0	9
35	Atomically Thin Bilayer Janus Membranes for Cryo-electron Microscopy. ACS Nano, 2021, 15, 16562-16571.	7.3	5
36	Analyzing Gamma-Ray Irradiation Effects on Carbon Nanotube Top-Gated Field-Effect Transistors. ACS Applied Materials & Interfaces, 2021, 13, 47756-47763.	4.0	14

#	Article	IF	CITATIONS
37	Broadband Bi ₂ O ₂ Se Photodetectors from Infrared to Terahertz. Advanced Functional Materials, 2021, 31, 2009554.	7.8	65
38	The effect of localized strain on the electrical characteristics of curved carbon nanotubes. Journal of Applied Physics, 2021, 129, 025107.	1.1	4
39	Temperature dependence of quantum oscillations from non-parabolic dispersions. Nature Communications, 2021, 12, 6213.	5.8	14
40	Hydrophilic, Clean Graphene for Cell Culture and Cryo-EM Imaging. Nano Letters, 2021, 21, 9587-9593.	4.5	7
41	Charge Transfer Properties of Heterostructures Formed by Bi 2 O 2 Se and Transition Metal Dichalcogenide Monolayers. Small, 2021, , 2106078.	5.2	8
42	Controlled Growth of Singleâ€Crystal Graphene Films. Advanced Materials, 2020, 32, e1903266.	11.1	95
43	Understanding Interlayer Contact Conductance in Twisted Bilayer Graphene. Small, 2020, 16, e1902844.	5.2	27
44	Optical Properties and Photocarrier Dynamics of Bi ₂ O ₂ Se Monolayer and Nanoplates. Advanced Optical Materials, 2020, 8, 1901567.	3.6	24
45	Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage. Nano Research, 2020, 13, 1875-1881.	5.8	13
46	Graphene Acoustic Phononâ€Mediated Pseudo‣andau Levels Tailoring Probed by Scanning Tunneling Spectroscopy. Small, 2020, 16, 1905202.	5.2	2
47	Flexible Integrated Circuits Based on Carbon Nanotubes. Accounts of Materials Research, 2020, 1, 88-99.	5.9	18
48	Interlayer Binding Energy of Hexagonal MoS2 as Determined by an In Situ Peeling-to-Fracture Method. Journal of Physical Chemistry C, 2020, 124, 23419-23425.	1.5	23
49	Ultrasensitive Magnetic Sensors Enabled by Heterogeneous Integration of Graphene Hall Elements and Silicon Processing Circuits. ACS Nano, 2020, 14, 17606-17614.	7.3	9
50	Growth of Ultraflat Graphene with Greatly Enhanced Mechanical Properties. Nano Letters, 2020, 20, 6798-6806.	4.5	19
51	A native oxide high-κ gate dielectric for two-dimensional electronics. Nature Electronics, 2020, 3, 473-478.	13.1	141
52	Strengthened Complementary Metal–Oxide–Semiconductor Logic for Small-Band-Gap Semiconductor-Based High-Performance and Low-Power Application. ACS Nano, 2020, 14, 15267-15275.	7.3	17
53	Uniform High-k Amorphous Native Oxide Synthesized by Oxygen Plasma for Top-Gated Transistors. Nano Letters, 2020, 20, 7469-7475.	4.5	37
54	New Growth Frontier: Superclean Graphene. ACS Nano, 2020, 14, 10796-10803.	7.3	41

#	Article	IF	CITATIONS
55	Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nature Electronics, 2020, 3, 622-629.	13.1	53
56	Silicon-Waveguide-Integrated Carbon Nanotube Optoelectronic System on a Single Chip. ACS Nano, 2020, 14, 7191-7199.	7.3	30
57	Quality metrology of carbon nanotube thin films and its application for carbon nanotube-based electronics. Nano Research, 2020, 13, 1749-1755.	5.8	15
58	Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 2020, 368, 850-856.	6.0	308
59	Superclean Growth of Graphene Using a Coldâ€Wall Chemical Vapor Deposition Approach. Angewandte Chemie - International Edition, 2020, 59, 17214-17218.	7.2	28
60	Wafer-Scale Uniform Carbon Nanotube Transistors for Ultrasensitive and Label-Free Detection of Disease Biomarkers. ACS Nano, 2020, 14, 8866-8874.	7.3	110
61	Superclean Growth of Graphene Using a Coldâ€Wall Chemical Vapor Deposition Approach. Angewandte Chemie, 2020, 132, 17367-17371.	1.6	4
62	nâ€Type Diracâ€Source Fieldâ€Effect Transistors Based on a Graphene/Carbon Nanotube Heterojunction. Advanced Electronic Materials, 2020, 6, 2000258.	2.6	16
63	Large Singleâ€Crystal Cu Foils with Highâ€Index Facets by Strainâ€Engineered Anomalous Grain Growth. Advanced Materials, 2020, 32, e2002034.	11.1	45
64	Exploiting Twoâ€Ðimensional Bi ₂ O ₂ Se for Trace Oxygen Detection. Angewandte Chemie - International Edition, 2020, 59, 17938-17943.	7.2	31
65	Unveiling the Fine Structural Distortion of Atomically Thin Bi ₂ O ₂ Se by Thirdâ€Harmonic Generation. Advanced Materials, 2020, 32, e2002831.	11.1	13
66	Quantitative Analyses of the Interfacial Properties of Current Collectors at the Mesoscopic Level in Lithium Ion Batteries by Using Hierarchical Graphene. Nano Letters, 2020, 20, 2175-2182.	4.5	18
67	Utilization of Synergistic Effect of Dimensionâ€Differentiated Hierarchical Nanomaterials for Transparent and Flexible Wireless Communicational Elements. Advanced Materials Technologies, 2020, 5, 1901057.	3.0	4
68	Interlayer Decoupling in 30° Twisted Bilayer Graphene Quasicrystal. ACS Nano, 2020, 14, 1656-1664.	7.3	64
69	High-Mobility Flexible Oxyselenide Thin-Film Transistors Prepared by a Solution-Assisted Method. Journal of the American Chemical Society, 2020, 142, 2726-2731.	6.6	47
70	Robust ultraclean atomically thin membranes for atomic-resolution electron microscopy. Nature Communications, 2020, 11, 541.	5.8	37
71	Transport signatures of relativistic quantum scars in a graphene cavity. Physical Review B, 2020, 101, .	1.1	3
72	Catalystâ€Free Synthesis of Few‣ayer Graphdiyne Using a Microwaveâ€Induced Temperature Gradient at a Solid/Liquid Interface, Advanced Functional Materials, 2020, 30, 2001396.	7.8	54

#	Article	IF	CITATIONS
73	Transconductance Amplification in Diracâ€Source Fieldâ€Effect Transistors Enabled by Graphene/Nanotube Hereojunctions. Advanced Electronic Materials, 2020, 6, 1901289.	2.6	6
74	Vertical graphene nanosheetsmodified Al current collectors for high-performance sodium-ion batteries. Nano Research, 2020, 13, 1948-1954.	5.8	26
75	Sub-10mK-Resolution Thermal-Bolometric Integrated FET-Type Sensors Based on Layered Bi2O2Se Semiconductor Nanosheets. , 2020, , .		2
76	Molecular Beam Epitaxy and Electronic Structure of Atomically Thin Oxyselenide Films. Advanced Materials, 2019, 31, e1901964.	11.1	59
77	Exploitation of Bi ₂ O ₂ Se/graphene van der Waals heterojunction for creating efficient photodetectors and shortâ€channel fieldâ€effect transistors. InformaÄnÃ-Materiály, 2019, 1, 390-395.	8.5	36
78	Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Science Advances, 2019, 5, eaaw8337.	4.7	77
79	Macroscale single crystal graphene templated directional alignment of liquid-crystal microlens array for light field imaging. Applied Physics Letters, 2019, 115, .	1.5	6
80	CNT Electronics: Advances in Highâ€₽erformance Carbonâ€Nanotube Thinâ€Film Electronics (Adv. Electron.) Tj E	TQq0 0 0	rgBT /Overlo
81	Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie - International Edition, 2019, 58, 14446-14451.	7.2	64
82	Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie, 2019, 131, 14588-14593.	1.6	5
83	Light-Enhanced Ion Migration in Two-Dimensional Perovskite Single Crystals Revealed in Carbon Nanotubes/Two-Dimensional Perovskite Heterostructure and Its Photomemory Application. ACS Central Science, 2019, 5, 1857-1865.	5.3	45
84	Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz. ACS Applied Materials & Interfaces, 2019, 11, 42496-42503.	4.0	34
85	Early Lithium Plating Behavior in Confined Nanospace of 3D Lithiophilic Carbon Matrix for Stable Solidâ€ S tate Lithium Metal Batteries. Small, 2019, 15, e1904216.	5.2	61
86	Bolometric Effect in Bi ₂ O ₂ Se Photodetectors. Small, 2019, 15, e1904482.	5.2	68
87	Frontispiz: Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie, 2019, 131, .	1.6	0
88	Frontispiece: Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie - International Edition, 2019, 58, .	7.2	2
89	Photodetectors: Bolometric Effect in Bi ₂ O ₂ Se Photodetectors (Small) Tj ETQq1 1 0.78	84314 rgB⊺ 5.2	[/Qverlock]

A Forceâ€Engineered Lint Roller for Superclean Graphene. Advanced Materials, 2019, 31, e1902978.

11.1 40

#	Article	IF	CITATIONS
91	A Singleâ€Electron Transistor Made of a 3D Topological Insulator Nanoplate. Advanced Materials, 2019, 31, e1903686.	11.1	10
92	Insight Into Ballisticity of Room-Temperature Carrier Transport in Carbon Nanotube Field-Effect Transistors. IEEE Transactions on Electron Devices, 2019, 66, 3535-3540.	1.6	26
93	High-performance sub-10 nm monolayer Bi ₂ O ₂ Se transistors. Nanoscale, 2019, 11, 532-540.	2.8	196
94	Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems. ACS Nano, 2019, 13, 2526-2535.	7.3	41
95	Exploring the Performance Limit of Carbon Nanotube Network Film Fieldâ€Effect Transistors for Digital Integrated Circuit Applications. Advanced Functional Materials, 2019, 29, 1808574.	7.8	35
96	Asymmetry allows photocurrent in intrinsic graphene. Nature Nanotechnology, 2019, 14, 105-106.	15.6	11
97	Speeding up carbon nanotube integrated circuits through three-dimensional architecture. Nano Research, 2019, 12, 1810-1816.	5.8	20
98	Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. Nano Research, 2019, 12, 1888-1893.	5.8	16
99	Dirac-cone induced gating enhancement in single-molecule field-effect transistors. Nanoscale, 2019, 11, 13117-13125.	2.8	11
100	Advances in Highâ€Performance Carbonâ€Nanotube Thinâ€Film Electronics. Advanced Electronic Materials, 2019, 5, 1900122.	2.6	27
101	Highâ€Performance and Radiationâ€Hard Carbon Nanotube Complementary Static Randomâ€Access Memory. Advanced Electronic Materials, 2019, 5, 1900313.	2.6	25
102	Synthesis challenges for graphene industry. Nature Materials, 2019, 18, 520-524.	13.3	389
103	Tunable, Ultrasensitive, and Flexible Pressure Sensors Based on Wrinkled Microstructures for Electronic Skins. ACS Applied Materials & amp; Interfaces, 2019, 11, 21218-21226.	4.0	151
104	Towards super-clean graphene. Nature Communications, 2019, 10, 1912.	5.8	133
105	Copper-Containing Carbon Feedstock for Growing Superclean Graphene. Journal of the American Chemical Society, 2019, 141, 7670-7674.	6.6	47
106	Thin Film FETs: Exploring the Performance Limit of Carbon Nanotube Network Film Fieldâ€Effect Transistors for Digital Integrated Circuit Applications (Adv. Funct. Mater. 16/2019). Advanced Functional Materials, 2019, 29, 1970106.	7.8	0
107	Wafer-Scale Growth of Single-Crystal 2D Semiconductor on Perovskite Oxides for High-Performance Transistors. Nano Letters, 2019, 19, 2148-2153.	4.5	82
108	Improving the Performance and Uniformity of Carbon-Nanotube-Network-Based Photodiodes via Yttrium Oxide Coating and Decoating. ACS Applied Materials & Interfaces, 2019, 11, 11736-11742.	4.0	26

#	Article	IF	CITATIONS
109	Carbon nanotube digital electronics. Nature Electronics, 2019, 2, 499-505.	13.1	111
110	Toward Mass Production of CVD Graphene Films. Advanced Materials, 2019, 31, e1800996.	11.1	218
111	Carbon nanotube-based photovoltaic receiver with open-circuit voltage larger than 10†V. Nano Energy, 2019, 57, 241-247.	8.2	4
112	Low Residual Carrier Concentration and High Mobility in 2D Semiconducting Bi ₂ O ₂ Se. Nano Letters, 2019, 19, 197-202.	4.5	95
113	Defects guided wrinkling in graphene on copper substrate. Carbon, 2019, 143, 736-742.	5.4	27
114	Truly Concomitant and Independently Expressed Short†and Longâ€Term Plasticity in a Bi ₂ O ₂ Seâ€Based Threeâ€Terminal Memristor. Advanced Materials, 2019, 31, e1805769.	11.1	85
115	Aligning Solutionâ€Đerived Carbon Nanotube Film with Full Surface Coverage for Highâ€Performance Electronics Applications. Advanced Materials, 2018, 30, e1707068.	11.1	21
116	Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering. Applied Physics Letters, 2018, 112, .	1.5	25
117	Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nature Electronics, 2018, 1, 237-245.	13.1	86
118	Revealing the Contribution of Individual Factors to Hydrogen Evolution Reaction Catalytic Activity. Advanced Materials, 2018, 30, e1706076.	11.1	86
119	Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit. ACS Sensors, 2018, 3, 749-756.	4.0	76
120	Large-area and highly uniform carbon nanotube film for high-performance thin film transistors. Nano Research, 2018, 11, 4356-4367.	5.8	40
121	Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures. Journal of Applied Physics, 2018, 123, .	1.1	3
122	High-Performance Carbon Nanotube Complementary Electronics and Integrated Sensor Systems on Ultrathin Plastic Foil. ACS Nano, 2018, 12, 2773-2779.	7.3	90
123	Improving subthreshold swing to thermionic emission limit in carbon nanotube network film-based field-effect. Applied Physics Letters, 2018, 112, .	1.5	21
124	Surprisingly fast cooling in graphene-based van der Waals stacks. Science China Materials, 2018, 61, 1017-1018.	3.5	2
125	Performance enhancement of carbon nanotube thin film transistor by yttrium oxide capping. Nanoscale, 2018, 10, 4202-4208.	2.8	17
126	Greatly Enhanced Anticorrosion of Cu by Commensurate Graphene Coating. Advanced Materials, 2018, 30, 1702944.	11.1	113

#	Article	IF	CITATIONS
127	Switching Vertical to Horizontal Graphene Growth Using Faraday Cageâ€Assisted PECVD Approach for Highâ€Performance Transparent Heating Device. Advanced Materials, 2018, 30, 1704839.	11.1	62
128	Scalable Preparation of High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. ACS Nano, 2018, 12, 627-634.	7.3	57
129	Anisotropic Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces. Small, 2018, 14, e1800725.	5.2	46
130	A new stage for flexible nanotube devices. Nature Electronics, 2018, 1, 158-159.	13.1	10
131	Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission. Nano Research, 2018, 11, 300-310.	5.8	23
132	Gigahertz integrated circuits based on carbon nanotube films. Nature Electronics, 2018, 1, 40-45.	13.1	132
133	Lowâ€Temperature and Rapid Growth of Large Singleâ€Crystalline Graphene with Ethane. Small, 2018, 14, 1702916.	5.2	39
134	Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Research, 2018, 11, 3154-3163.	5.8	19
135	First Principles Simulation of Energy efficient Switching by Source Density of States Engineering. , 2018, , .		13
136	Three-dimensional integration of plasmonics and nanoelectronics. Nature Electronics, 2018, 1, 644-651.	13.1	32
137	Diverse Atomically Sharp Interfaces and Linear Dichroism of 1T' ReS ₂ â€ReSe ₂ Lateral p–n Heterojunctions. Advanced Functional Materials, 2018, 28, 1804696.	7.8	50
138	Waferâ€6cale Fabrication of Ultrathin Flexible Electronic Systems via Capillaryâ€Assisted Electrochemical Delamination. Advanced Materials, 2018, 30, e1805408.	11.1	38
139	Ultrafast Broadband Charge Collection from Clean Graphene/CH ₃ NH ₃ Pbl ₃ Interface. Journal of the American Chemical Society, 2018, 140, 14952-14957.	6.6	29
140	Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. Chemical Reviews, 2018, 118, 9281-9343.	23.0	260
141	Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi ₂ O ₂ Se. Science Advances, 2018, 4, eaat8355.	4.7	167
142	Flexible Photodetectors: Lowâ€īemperature Heteroepitaxy of 2D Pbl ₂ /Graphene for Largeâ€Area Flexible Photodetectors (Adv. Mater. 36/2018). Advanced Materials, 2018, 30, 1870271.	11.1	4
143	Controlling the Growth of Single Nanowires in a Nanowire Forest for near-Infrared Photodetection. ACS Applied Nano Materials, 2018, 1, 3035-3041.	2.4	4
144	Dirac Electrons at the Source: Breaking the 60-mV/Decade Switching Limit. IEEE Transactions on Electron Devices, 2018, 65, 2736-2743.	1.6	62

#	Article	IF	CITATIONS
145	Silicon Oxide Electronâ€Emitting Nanodiodes. Advanced Electronic Materials, 2018, 4, 1800136.	2.6	15
146	Self-modulation doping effect in the high-mobility layered semiconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:n mathvariant="normal">O<mml:mn>2</mml:mn></mml:n </mml:msub><mml:mi>Se</mml:mi></mml:mrow>< Physical Review B, 2018, 97, .</mml:math 	n>2/mmi:mat	ıl:mŋ> h>.
147	Interlayer electrical resistivity of rotated graphene layers studied by in-situ scanning electron microscopy. Ultramicroscopy, 2018, 193, 90-96.	0.8	8
148	Carbon nanotube-based flexible electronics. Journal of Materials Chemistry C, 2018, 6, 7714-7727.	2.7	77
149	Lowâ€Temperature Heteroepitaxy of 2D Pbl ₂ /Graphene for Largeâ€Area Flexible Photodetectors. Advanced Materials, 2018, 30, e1803194.	11.1	93
150	Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nature Communications, 2018, 9, 3311.	5.8	213
151	Lowering interface state density in carbon nanotube thin film transistors through using stacked Y2O3/HfO2 gate dielectric. Applied Physics Letters, 2018, 113, .	1.5	32
152	Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science, 2018, 361, 387-392.	6.0	226
153	Kinetically controlled hierarchical self-assemblies of all-trans-retinoic acid on Au(111). Chemical Communications, 2017, 53, 2252-2255.	2.2	8
154	Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355, 271-276.	6.0	526
155	Plasmonâ€Induced Enhancement of Infrared Detection Using a Carbon Nanotube Diode. Advanced Optical Materials, 2017, 5, 1600865.	3.6	9
156	Sensitivity enhancement of graphene Hall sensors modified by single-molecule magnets at room temperature. RSC Advances, 2017, 7, 1776-1781.	1.7	10
157	Microcavity-Controlled Chirality-Sorted Carbon Nanotube Film Infrared Light Emitters. ACS Photonics, 2017, 4, 435-442.	3.2	14
158	Carbon nanotube thin film transistors fabricated by an etching based manufacturing compatible process. Nanoscale, 2017, 9, 4388-4396.	2.8	12
159	Packing fractal Sierpiński triangles into one-dimensional crystals via a templating method. Chemical Communications, 2017, 53, 3469-3472.	2.2	28
160	Epitaxial Growth of Ternary Topological Insulator Bi ₂ Te ₂ Se 2D Crystals on Mica. Small, 2017, 13, 1603572.	5.2	20
161	Controlled Synthesis of High-Mobility Atomically Thin Bismuth Oxyselenide Crystals. Nano Letters, 2017, 17, 3021-3026.	4.5	222
162	A contact study in hole conductor free perovskite solar cells with low temperature processed carbon electrodes. RSC Advances, 2017, 7, 20732-20737.	1.7	21

Lian-Mao Peng

#	Article	IF	CITATIONS
163	Electrical and Photoresponse Properties of Inversion Asymmetric Topological Insulator BiTeCl Nanoplates. ChemNanoMat, 2017, 3, 406-410.	1.5	5
164	Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Research, 2017, 10, 2732-2742.	5.8	69
165	Superlubricity between MoS ₂ Monolayers. Advanced Materials, 2017, 29, 1701474.	11.1	220
166	Substrate Doping Effect and Unusually Large Angle van Hove Singularity Evolution in Twisted Bi―and Multilayer Graphene. Advanced Materials, 2017, 29, 1606741.	11.1	43
167	Clean Transfer of Large Graphene Single Crystals for Highâ€Intactness Suspended Membranes and Liquid Cells. Advanced Materials, 2017, 29, 1700639.	11.1	80
168	Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes. Nano Letters, 2017, 17, 3681-3687.	4.5	241
169	Electron–Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene. ACS Nano, 2017, 11, 4641-4650.	7.3	46
170	Carbon nanotube radio-frequency electronics. Nanotechnology, 2017, 28, 212001.	1.3	20
171	Formation mechanism of overlapping grain boundaries in graphene chemical vapor deposition growth. Chemical Science, 2017, 8, 2209-2214.	3.7	35
172	lodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal Dichalcogenides. Chemistry of Materials, 2017, 29, 4641-4644.	3.2	38
173	Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nature Communications, 2017, 8, 15649.	5.8	57
174	The Way towards Ultrafast Growth of Single rystal Graphene on Copper. Advanced Science, 2017, 4, 1700087.	5.6	40
175	Scaling down contact length in complementary carbon nanotube field-effect transistors. Nanoscale, 2017, 9, 9615-9621.	2.8	18
176	High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nature Nanotechnology, 2017, 12, 530-534.	15.6	507
177	Rapid growth of angle-confined large-domain graphene bicrystals. Nano Research, 2017, 10, 1189-1199.	5.8	9
178	Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films. ACS Applied Materials & Interfaces, 2017, 9, 12743-12749.	4.0	28
179	High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. ACS Nano, 2017, 11, 4124-4132.	7.3	127
180	Plasmonic hot electron tunneling photodetection in vertical Au–graphene hybrid nanostructures. Laser and Photonics Reviews, 2017, 11, 1600148.	4.4	61

#	Article	IF	CITATIONS
181	Asymmetric Light Excitation for Photodetectors Based on Nanoscale Semiconductors. ACS Nano, 2017, 11, 549-557.	7.3	10
182	Grapheneâ€Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithiumâ€Ion Battery. Advanced Materials, 2017, 29, 1703882.	11.1	85
183	Chemical Intercalation of Topological Insulator Grid Nanostructures for Highâ€Performance Transparent Electrodes. Advanced Materials, 2017, 29, 1703424.	11.1	21
184	Chemical Patterning of Highâ€Mobility Semiconducting 2D Bi ₂ O ₂ Se Crystals for Integrated Optoelectronic Devices. Advanced Materials, 2017, 29, 1704060.	11.1	142
185	Electrically driven monolithic subwavelength plasmonic interconnect circuits. Science Advances, 2017, 3, e1701456.	4.7	34
186	Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In ₂ Se ₃ Nanoflakes. Nano Letters, 2017, 17, 5508-5513.	4.5	567
187	Low-energy transmission electron diffraction and imaging of large-area graphene. Science Advances, 2017, 3, e1603231.	4.7	35
188	Atomic-Layer-Deposition Growth of an Ultrathin HfO ₂ Film on Graphene. ACS Applied Materials & Interfaces, 2017, 9, 34050-34056.	4.0	42
189	Construction of Sierpiński Triangles up to the Fifth Order. Journal of the American Chemical Society, 2017, 139, 13749-13753.	6.6	57
190	Ultrasensitive triboelectric nanogenerator for weak ambient energy with rational unipolar stacking structure and low-loss power management. Nano Energy, 2017, 41, 351-358.	8.2	19
191	Thermionic electron emission from single carbon nanostructures and its applications in vacuum nanoelectronics. MRS Bulletin, 2017, 42, 493-499.	1.7	7
192	2D Materials: Superlubricity between MoS ₂ Monolayers (Adv. Mater. 27/2017). Advanced Materials, 2017, 29, .	11.1	38
193	Single Crystals: Clean Transfer of Large Graphene Single Crystals for Highâ€Intactness Suspended Membranes and Liquid Cells (Adv. Mater. 26/2017). Advanced Materials, 2017, 29, .	11.1	2
194	Hierarchical Graphene Foam for Efficient Omnidirectional Solar–Thermal Energy Conversion. Advanced Materials, 2017, 29, 1702590.	11.1	675
195	Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS Nano, 2017, 11, 12337-12345.	7.3	172
196	Performance improvement induced by asymmetric Y2O3-coated device structure to carbon-nanotube-film based photodetectors. Applied Physics Letters, 2017, 111, .	1.5	5
197	Nonlocal Response in Infrared Detector with Semiconducting Carbon Nanotubes and Graphdiyne. Advanced Science, 2017, 4, 1700472.	5.6	29
198	Electrostatics and quantum efficiency simulations of asymmetrically contacted carbon nanotube photodetector. AIP Advances, 2017, 7, 105111.	0.6	0

#	Article	IF	CITATIONS
199	Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Science Bulletin, 2017, 62, 1074-1080.	4.3	454
200	Synthesis of Hierarchical Graphdiyne-Based Architecture for Efficient Solar Steam Generation. Chemistry of Materials, 2017, 29, 5777-5781.	3.2	206
201	Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source. Nano Research, 2017, 10, 355-363.	5.8	30
202	Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes. ACS Nano, 2017, 11, 186-193.	7.3	100
203	Scaling carbon nanotube CMOS FETs towards quantum limit. , 2017, , .		9
204	Solution-processed carbon nanotubes based transistors with current density of 1.7 mA/μm and peak transconductance of 0.8 mS/μm. , 2017, , .		12
205	Vacuum synthesis of magnetic aluminum phthalocyanine on Au(111). Chemical Communications, 2016, 52, 10338-10341.	2.2	14
206	Toward Highâ€Performance Carbon Nanotube Photovoltaic Devices. Advanced Energy Materials, 2016, 6, 1600522.	10.2	28
207	Edge‣tatesâ€Induced Disruption to the Energy Band Alignment at Thicknessâ€Modulated Molybdenum Sulfide Junctions. Advanced Electronic Materials, 2016, 2, 1600048.	2.6	18
208	Tuning Chemical Potential Difference across Alternately Doped Graphene p–n Junctions for High-Efficiency Photodetection. Nano Letters, 2016, 16, 4094-4101.	4.5	34
209	Microcavity-Integrated Carbon Nanotube Photodetectors. ACS Nano, 2016, 10, 6963-6971.	7.3	36
210	Growth of covalently bonded Sierpiński triangles up to the second generation. RSC Advances, 2016, 6, 66548-66552.	1.7	26
211	Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Science Advances, 2016, 2, e1601572.	4.7	32
212	Carbon Nanotube Thin Film Transistors for Flat Panel Display Application. Topics in Current Chemistry, 2016, 374, 80.	3.0	24
213	Exploration of vertical scaling limit in carbon nanotube transistors. Applied Physics Letters, 2016, 108,	1.5	6
214	On-chip polarized light emitters based on (6,5) chirality-sorted carbon nanotube aligned arrays. Applied Physics Letters, 2016, 108, .	1.5	9
215	Wearable Technology: Machine-Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns (Adv. Mater. 46/2016). Advanced Materials, 2016, 28, 10266-10266.	11.1	6
216	Wafer scale fabrication of carbon nanotube thin film transistors with high yield. Journal of Applied Physics, 2016, 120, .	1.1	20

#	Article	IF	CITATIONS
217	Two-Dimensional (C ₄ H ₉ NH ₃) ₂ PbBr ₄ Perovskite Crystals for High-Performance Photodetector. Journal of the American Chemical Society, 2016, 138, 16612-16615.	6.6	341
218	Whole-journey nanomaterial research in an electron microscope: from material synthesis, composition characterization, property measurements to device construction and tests. Nanotechnology, 2016, 27, 485710.	1.3	3
219	Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors. Nanoscale, 2016, 8, 9988-9996.	2.8	22
220	Performance projections for ballistic carbon nanotube FinFET at circuit level. Nano Research, 2016, 9, 1785-1794.	5.8	17
221	Building Large-Domain Twisted Bilayer Graphene with van Hove Singularity. ACS Nano, 2016, 10, 6725-6730.	7.3	53
222	Photovoltaic Devices: Toward High-Performance Carbon Nanotube Photovoltaic Devices (Adv. Energy) Tj ETQqO	0 0 rgBT /	Overlock 10 7
223	Machineâ€Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns. Advanced Materials, 2016, 28, 10267-10274.	11.1	328
224	Chemical vapor deposition of bilayer graphene with layer-resolved growth through dynamic pressure control. Journal of Materials Chemistry C, 2016, 4, 7464-7471.	2.7	28
225	Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. Nano Letters, 2016, 16, 5120-5128.	4.5	101
226	Surface Monocrystallization of Copper Foil for Fast Growth of Large Single rystal Graphene under Free Molecular Flow. Advanced Materials, 2016, 28, 8968-8974.	11.1	128
227	Fieldâ€Effect Transistors: Edgeâ€Statesâ€Induced Disruption to the Energy Band Alignment at Thicknessâ€Modulated Molybdenum Sulfide Junctions (Adv. Electron. Mater. 8/2016). Advanced Electronic Materials, 2016, 2, .	2.6	0
228	Robust Sierpiński triangle fractals on symmetry-mismatched Ag(100). Chemical Communications, 2016, 52, 10578-10581.	2.2	50
229	Contact-dominated transport in carbon nanotube thin films: toward large-scale fabrication of high performance photovoltaic devices. Nanoscale, 2016, 8, 17122-17130.	2.8	11
230	High Conversion Efficiency Carbon Nanotube-Based Barrier-Free Bipolar-Diode Photodetector. ACS Nano, 2016, 10, 9595-9601.	7.3	23
231	Spin Manipulation by Creation of Single-Molecule Radical Cations. Physical Review Letters, 2016, 116, 027201.	2.9	53
232	Isotropic Growth of Graphene toward Smoothing Stitching. ACS Nano, 2016, 10, 7189-7196.	7.3	47
233	Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes. Nano Letters, 2016, 16, 7731-7738.	4.5	82
234	Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nature Communications, 2016, 7, 13440.	5.8	93

Lian-Mao Peng

#	Article	IF	CITATIONS
235	Chemically Engineered Substrates for Patternable Growth of Two-Dimensional Chalcogenide Crystals. ACS Nano, 2016, 10, 10317-10323.	7.3	16
236	Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nature Communications, 2016, 7, 10699.	5.8	136
237	Tunable graphene micro-emitters with fast temporal response and controllable electron emission. Nature Communications, 2016, 7, 11513.	5.8	48
238	Carbon Nanotube Self-Gating Diode and Application in Integrated Circuits. ACS Nano, 2016, 10, 6737-6743.	7.3	21
239	Nanoscale color sensors made on semiconducting multi-wall carbon nanotubes. Nano Research, 2016, 9, 1470-1479.	5.8	6
240	Rapid Growth of Large Single rystalline Graphene via Second Passivation and Multistage Carbon Supply. Advanced Materials, 2016, 28, 4671-4677.	11.1	69
241	Room Temperature Broadband Infrared Carbon Nanotube Photodetector with High Detectivity and Stability. Advanced Optical Materials, 2016, 4, 238-245.	3.6	90
242	A transparent, conducting tape for flexible electronics. Nano Research, 2016, 9, 917-924.	5.8	44
243	Broadband optical properties of graphene by spectroscopic ellipsometry. Carbon, 2016, 99, 348-353.	5.4	66
244	Photodetectors: Room Temperature Broadband Infrared Carbon Nanotube Photodetector with High Detectivity and Stability (Advanced Optical Materials 2/2016). Advanced Optical Materials, 2016, 4, 188-188.	3.6	2
245	Controllable Sliding Transfer of Waferâ€Size Graphene. Advanced Science, 2016, 3, 1600006.	5.6	25
246	Solid state carbon nanotube device for controllable trion electroluminescence emission. Nanoscale, 2016, 8, 6761-6769.	2.8	20
247	Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene. ACS Nano, 2016, 10, 2922-2929.	7.3	89
248	Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid. Nano Letters, 2016, 16, 2103-2107.	4.5	45
249	Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Research, 2016, 9, 963-973.	5.8	60
250	Weak antilocalization and electron–electron interaction in coupled multiple-channel transport in a Bi ₂ Se ₃ thin film. Nanoscale, 2016, 8, 1879-1885.	2.8	49
251	Performance Boosting of Flexible ZnO UV Sensors with Rational Designed Absorbing Antireflection Layer and Humectant Encapsulation. ACS Applied Materials & Interfaces, 2016, 8, 381-389.	4.0	23
252	Contact Resistance Effects in Carbon Nanotube Thin Film Transistors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 1029-1035.	2.2	7

#	Article	IF	CITATIONS
253	Comparison of mobility extraction methods based on field-effect measurements for graphene. AIP Advances, 2015, 5, 057136.	0.6	61
254	Flexible graphene hall sensors with high sensitivity. , 2015, , .		4
255	2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes. Advanced Materials, 2015, 27, 4315-4321.	11.1	8
256	A Grapheneâ€Based Vacuum Transistor with a High ON/OFF Current Ratio. Advanced Functional Materials, 2015, 25, 5972-5978.	7.8	40
257	Rollâ€ŧoâ€Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator. Advanced Materials, 2015, 27, 5210-5216.	11.1	273
258	Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Letters, 2015, 15, 4206-4213.	4.5	410
259	Governing Rule for Dynamic Formation of Grain Boundaries in Grown Graphene. ACS Nano, 2015, 9, 5792-5798.	7.3	66
260	High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits. Nanoscale, 2015, 7, 10954-10962.	2.8	63
261	Flexible Light-Emitting Devices Based on Chirality-Sorted Semiconducting Carbon Nanotube Films. ACS Applied Materials & Interfaces, 2015, 7, 3462-3467.	4.0	19
262	Transient response of carbon nanotube integrated circuits. Nano Research, 2015, 8, 1005-1016.	5.8	10
263	Carbon Nanotube Feedback-Gate Field-Effect Transistor: Suppressing Current Leakage and Increasing On/Off Ratio. ACS Nano, 2015, 9, 969-977.	7.3	75
264	Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nature Communications, 2015, 6, 6099.	5.8	120
265	Controlled synthesis of single-crystal SnSe nanoplates. Nano Research, 2015, 8, 288-295.	5.8	207
266	Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nature Communications, 2015, 6, 6519.	5.8	190
267	A Roadmap for Controlled Production of Topological Insulator Nanostructures and Thin Films. Small, 2015, 11, 3290-3305.	5.2	42
268	van Hove Singularity Enhanced Photochemical Reactivity of Twisted Bilayer Graphene. Nano Letters, 2015, 15, 5585-5589.	4.5	59
269	Transparent conducting oxide free backside illuminated perovskite solar cells. Applied Physics Letters, 2015, 107, .	1.5	11
270	Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries. Chemical Communications, 2015, 51, 13787-13790.	2.2	118

#	Article	IF	CITATIONS
271	Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nature Communications, 2015, 6, 6972.	5.8	172
272	Synthesis of dispersed long single-crystalline TiO2 paste and its application in DSSC as a scattering layer. Science China Chemistry, 2015, 58, 1501-1507.	4.2	1
273	Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes. Nanoscale, 2015, 7, 6805-6812.	2.8	16
274	Multifunctional Graphene Sensors for Magnetic and Hydrogen Detection. ACS Applied Materials & Interfaces, 2015, 7, 9581-9588.	4.0	47
275	Realization of low contact resistance close to theoretical limit in graphene transistors. Nano Research, 2015, 8, 1669-1679.	5.8	78
276	Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm. Nano Energy, 2015, 17, 104-110.	8.2	40
277	Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface. Nano Research, 2015, 8, 3694-3703.	5.8	36
278	Controlling Molecular Growth between Fractals and Crystals on Surfaces. ACS Nano, 2015, 9, 11909-11915.	7.3	68
279	Exploration of sensitivity limit for graphene magnetic sensors. Carbon, 2015, 94, 585-589.	5.4	32
280	Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nature Communications, 2015, 6, 8569.	5.8	336
281	Sierpiński-triangle fractal crystals with the C3v point group. Chinese Chemical Letters, 2015, 26, 1198-1202.	4.8	43
282	Monodisperse Copper Chalcogenide Nanocrystals: Controllable Synthesis and the Pinning of Plasmonic Resonance Absorption. Journal of the American Chemical Society, 2015, 137, 12006-12012.	6.6	61
283	Growth of Uniform Monolayer Graphene Using Iron-Group Metals via the Formation of an Antiperovskite Layer. Chemistry of Materials, 2015, 27, 8230-8236.	3.2	23
284	Thickness-Dependent Dielectric Constant of Few-Layer In ₂ Se ₃ Nanoflakes. Nano Letters, 2015, 15, 8136-8140.	4.5	99
285	Dimensionality-dependent charge transport in close-packed nanoparticle arrays: from 2D to 3D. Scientific Reports, 2015, 4, 7565.	1.6	18
286	Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions. Applied Physics Letters, 2014, 105, 213501.	1.5	8
287	Interlayer vibrational modes in few-quintuple-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mm xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mm crystals: Raman spectroscopy and, Physical Review B, 2014, 90, .</mm </mml:msub></mml:mrow></mm </mml:msub></mml:mrow></mml:math 	l:mn>2l:mn>2 <td>າl:mn> າl:mn> </td>	າl:mn> າl:mn>
288	Transition of temperature coefficient of conductance in weakly coupled gold nanoparticle arrays. Applied Physics Letters, 2014, 105, 233116.	1.5	1

Lian-Mao Peng

#	Article	IF	CITATIONS
289	High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide. Applied Physics Letters, 2014, 105, 063101.	1.5	10
290	Response to "Comment on â€~Unexpected size effect in the thermopower of thin-film stripes'―[J. Appl. Phys. 115, 236101 (2014)]. Journal of Applied Physics, 2014, 115, 236102.	1.1	4
291	Penetrative imaging of sub-surface microstructures with a near-field microwave microscope. Journal of Applied Physics, 2014, 116, .	1.1	10
292	Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment. Journal of Applied Physics, 2014, 115, .	1.1	33
293	Electroluminescence from Serpentine Carbon Nanotube Based Lightâ€Emitting Diodes on Quartz. Small, 2014, 10, 1050-1056.	5.2	13
294	Ultra-sensitive graphene Hall elements. Applied Physics Letters, 2014, 104, .	1.5	43
295	Repeated Growth–Etching–Regrowth for Large-Area Defect-Free Single-Crystal Graphene by Chemical Vapor Deposition. ACS Nano, 2014, 8, 12806-12813.	7.3	100
296	Scalable Fabrication of Ambipolar Transistors and Radioâ€Frequency Circuits Using Aligned Carbon Nanotube Arrays. Advanced Materials, 2014, 26, 645-652.	11.1	30
297	Thermal transport along Bi2Te3 topological insulator nanowires. Applied Physics Letters, 2014, 105, .	1.5	16
298	Layerâ€Stacking Growth and Electrical Transport of Hierarchical Graphene Architectures. Advanced Materials, 2014, 26, 3218-3224.	11.1	39
299	Nanoantennaâ€Sandwiched Graphene with Giant Spectral Tuning in the Visibleâ€ŧoâ€Nearâ€Infrared Region. Advanced Optical Materials, 2014, 2, 162-170.	3.6	39
300	Modularized Construction of General Integrated Circuits on Individual Carbon Nanotubes. Nano Letters, 2014, 14, 3102-3109.	4.5	28
301	Growth of Semiconducting Single-Walled Carbon Nanotubes by Using Ceria as Catalyst Supports. Nano Letters, 2014, 14, 512-517.	4.5	80
302	Graphene: Layer tacking Growth and Electrical Transport of Hierarchical Graphene Architectures (Adv. Mater. 20/2014). Advanced Materials, 2014, 26, 3355-3355.	11.1	0
303	Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Physical Review B, 2014, 90, .	1.1	106
304	How good can CVD-grown monolayer graphene be?. Nanoscale, 2014, 6, 15255-15261.	2.8	48
305	Carbon nanotubes for high-performance logic. MRS Bulletin, 2014, 39, 719-726.	1.7	11
306	Exploration of yttria films as gate dielectrics in sub-50 nm carbon nanotube field-effect transistors. Nanoscale, 2014, 6, 11316-11321.	2.8	18

#	Article	IF	CITATIONS
307	Graphene: Controlled Growth of Single-Crystal Twelve-Pointed Graphene Grains on a Liquid Cu Surface (Adv. Mater. 37/2014). Advanced Materials, 2014, 26, 6519-6519.	11.1	1
308	Carbon nanotube electronics: recent advances. Materials Today, 2014, 17, 433-442.	8.3	267
309	Floating Growth of Large-Scale Freestanding TiO ₂ Nanorod Films at the Gas–Liquid Interface for Additive-Free Li-Ion Battery Applications. ACS Applied Materials & Interfaces, 2014, 6, 17376-17383.	4.0	14
310	Length Scaling of Carbon Nanotube Electric and Photo Diodes down to Sub-50 nm. Nano Letters, 2014, 14, 5382-5389.	4.5	25
311	Creating One-Dimensional Nanoscale Periodic Ripples in a Continuous Mosaic Graphene Monolayer. Physical Review Letters, 2014, 113, 086102.	2.9	111
312	Growth of High-Density-Aligned and Semiconducting-Enriched Single-Walled Carbon Nanotubes: Decoupling the Conflict between Density and Selectivity. ACS Nano, 2014, 8, 554-562.	7.3	68
313	Carbon nanotube light sensors with linear dynamic range of over 120 dB. Applied Physics Letters, 2014, 105, .	1.5	29
314	Controlled Growth of Singleâ€Crystal Twelveâ€Pointed Graphene Grains on a Liquid Cu Surface. Advanced Materials, 2014, 26, 6423-6429.	11.1	55
315	Novel graphene–oxide–semiconductor nanowire phototransistors. Journal of Materials Chemistry C, 2014, 2, 1592.	2.7	19
316	Organohalide lead perovskite based photodetectors with much enhanced performance. Chemical Communications, 2014, 50, 13695-13697.	2.2	206
317	Breakdown of Richardson's Law in Electron Emission from Individual Self-Joule-Heated Carbon Nanotubes. Scientific Reports, 2014, 4, 5102.	1.6	28
318	Graphene/Si CMOS Hybrid Hall Integrated Circuits. Scientific Reports, 2014, 4, 5548.	1.6	46
319	The effects of the transfer process on the quality of CVD-grown graphene. Chinese Science Bulletin, 2014, 59, 3322-3328.	0.4	2
320	Designed CVD Growth of Graphene via Process Engineering. Accounts of Chemical Research, 2013, 46, 2263-2274.	7.6	172
321	Reliability tests and improvements for Sc-contacted n-type carbon nanotube transistors. Nano Research, 2013, 6, 535-545.	5.8	19
322	Large-scale floated single-crystalline TiO2 flower-like films: synthesis details and applications. RSC Advances, 2013, 3, 17668.	1.7	5
323	Controllability of the Coulomb charging energy in close-packed nanoparticle arrays. Nanoscale, 2013, 5, 10258.	2.8	20
324	Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. Journal of Electroanalytical Chemistry, 2013, 688, 243-248.	1.9	38

#	Article	IF	CITATIONS
325	Self-Assembly of Large-Scale Floating TiO2Nanorod Arrays at the Gas–Liquid Interface. ACS Applied Materials & Interfaces, 2013, 5, 8850-8852.	4.0	6
326	Flicker noise and magnetic resolution of graphene hall sensors at low frequency. Applied Physics Letters, 2013, 103, .	1.5	39
327	Batch-fabricated high-performance graphene Hall elements. Scientific Reports, 2013, 3, 1207.	1.6	72
328	Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Applied Physics Letters, 2013, 102, .	1.5	112
329	Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles. Applied Physics Letters, 2013, 102, .	1.5	34
330	Scalable fabrication of graphene devices through photolithography. Applied Physics Letters, 2013, 102,	1.5	53
331	Carbon Nanotube Photoelectronic and Photovoltaic Devices and their Applications in Infrared Detection. Small, 2013, 9, 1225-1236.	5.2	92
332	Carrier sheet density constrained anomalous current saturation of graphene field effect transistors: kinks and negative differential resistances. Nanoscale, 2013, 5, 2811.	2.8	11
333	Free Radicals: Free Radical Reactions in Two Dimensions: A Case Study on Photochlorination of Graphene (Small 8/2013). Small, 2013, 9, 1387-1387.	5.2	0
334	Dielectric constant of NiO and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mtext>LDA</mml:mtext><mml:mo>+</mml:mo><mml:mi>U</mml:mi>Physical Review B, 2013, 87, .</mml:mrow></mml:math>	nml :m row:	⊳
335	Direct observation of substrate induced exciton in carbon nanotube. Applied Physics Letters, 2013, 103,	1.5	1
336	Carbon Nanotube Based Multifunctional Ambipolar Transistors for AC Applications. Advanced Functional Materials, 2013, 23, 446-450.	7.8	11
337	Electron emission from a two-dimensional crystal with atomic thickness. AIP Advances, 2013, 3, .	0.6	23
338	Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition. Nature Communications, 2013, 4, 2205.	5.8	45
339	High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Scientific Reports, 2013, 3, 2670.	1.6	75
340	CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nature Communications, 2012, 3, 677.	5.8	145
341	Model GW study of the late transition metal monoxides. Journal of Chemical Physics, 2012, 137, 154110.	1.2	12
342	A doping-free approach to carbon nanotube electronics and optoelectronics. AIP Advances, 2012, 2, .	0.6	25

#	Article	IF	CITATIONS
343	Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements. Applied Physics Letters, 2012, 101, .	1.5	28
344	Carbon nanotube arrays based high-performance infrared photodetector [Invited]. Optical Materials Express, 2012, 2, 839.	1.6	93
345	Carbon Nanotube Field-Effect Transistors for Use as Pass Transistors in Integrated Logic Gates and Full Subtractor Circuits. ACS Nano, 2012, 6, 4013-4019.	7.3	22
346	Pointwise Plucking of Suspended Carbon Nanotubes. Nano Letters, 2012, 12, 3663-3667.	4.5	5
347	Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nature Chemistry, 2012, 4, 281-286.	6.6	309
348	Contact length scaling in graphene field-effect transistors. Applied Physics Letters, 2012, 100, 103501.	1.5	32
349	Graphene-based ambipolar electronics for radio frequency applications. Science Bulletin, 2012, 57, 2956-2970.	1.7	22
350	Channel-Length-Dependent Transport and Photovoltaic Characteristics of Carbon-Nanotube-Based, Barrier-Free Bipolar Diode. ACS Applied Materials & Interfaces, 2012, 4, 1154-1157.	4.0	9
351	Patterned Closeâ€Packed Nanoparticle Arrays with Controllable Dimensions and Precise Locations. Small, 2012, 8, 991-996.	5.2	21
352	Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V. Applied Physics Letters, 2012, 100, 263116.	1.5	61
353	Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications, 2012, 3, 699.	5.8	985
354	Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties. Frontiers of Physics, 2012, 7, 208-217.	2.4	22
355	High-performance doping-free carbon-nanotube-based CMOS devices and integrated circuits. Science Bulletin, 2012, 57, 135-148.	1.7	14
356	Doping-free carbon nanotube optoelectronic devices. Science Bulletin, 2012, 57, 149-156.	1.7	23
357	Doping-free fabrication of carbon nanotube thin-film diodes and their photovoltaic characteristics. Nano Research, 2012, 5, 33-42.	5.8	12
358	Hybrid CdSe/TiO2 nanowire photoelectrodes: Fabrication and photoelectric performance. Journal of Materials Chemistry, 2011, 21, 8749.	6.7	41
359	Modified RCA clean transfer of graphene and all-carbon electronic devices fabrication. , 2011, , .		0
360	Nanoparticle and nanorod TiO2 composite photoelectrodes with improved performance. Chemical Communications, 2011, 47, 6608.	2.2	33

#	Article	IF	CITATIONS
361	Phonon-Assisted Electron Emission from Individual Carbon Nanotubes. Nano Letters, 2011, 11, 734-739.	4.5	40
362	High-Performance Carbon Nanotube Light-Emitting Diodes with Asymmetric Contacts. Nano Letters, 2011, 11, 23-29.	4.5	91
363	Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition. Nano Letters, 2011, 11, 1106-1110.	4.5	365
364	Properties of photochlorinated graphene. , 2011, , .		0
365	Electronic transport in single-walled carbon nanotube/graphene junction. Applied Physics Letters, 2011, 99, .	1.5	48
366	Top-Gated Graphene Field-Effect Transistors with High Normalized Transconductance and Designable Dirac Point Voltage. ACS Nano, 2011, 5, 5031-5037.	7.3	96
367	Toward Clean and Crackless Transfer of Graphene. ACS Nano, 2011, 5, 9144-9153.	7.3	701
368	Unexpected size effect in the thermopower of thin-film stripes. Journal of Applied Physics, 2011, 110, 083709.	1.1	39
369	Self-Aligned U-Gate Carbon Nanotube Field-Effect Transistor with Extremely Small Parasitic Capacitance and Drain-Induced Barrier Lowering. ACS Nano, 2011, 5, 2512-2519.	7.3	32
370	Quantum Capacitance Limited Vertical Scaling of Graphene Field-Effect Transistor. ACS Nano, 2011, 5, 2340-2347.	7.3	128
371	Efficient photovoltage multiplication in carbon nanotubes. Nature Photonics, 2011, 5, 672-676.	15.6	133
372	Measurements and microscopic model of quantum capacitance in graphene. Applied Physics Letters, 2011, 98, .	1.5	88
373	Electric-field-direction dependent spatial distribution of electron emission along electrically biased carbon nanotubes. Physical Review B, 2011, 84, .	1.1	10
374	Fabrication, Transfer, and Transport Properties of Monolayered Freestanding Nanoparticle Sheets. Small, 2011, 7, 583-587.	5.2	27
375	Nitrogenâ€Doped Singleâ€Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties. Advanced Functional Materials, 2011, 21, 986-992.	7.8	54
376	Temperature Performance of Dopingâ€Free Topâ€Gate CNT Fieldâ€Effect Transistors: Potential for Low―and Highâ€Temperature Electronics. Advanced Functional Materials, 2011, 21, 1843-1849.	7.8	24
377	Simultaneous Electrical and Thermoelectric Parameter Retrieval via Two Terminal Current–Voltage Measurements on Individual ZnO Nanowires. Advanced Functional Materials, 2011, 21, 3900-3906.	7.8	16
378	Fabrication and electric measurements of nanostructures inside transmission electron microscope. Ultramicroscopy, 2011, 111, 948-954.	0.8	8

#	Article	IF	CITATIONS
379	Thermoelectric Measurement of Multi-Walled Carbon Nanotube Bundles by Using Nano-Probes. Journal of Nanoscience and Nanotechnology, 2010, 10, 4985-4991.	0.9	0
380	Spatially and Angularly Resolved Cathodoluminescence Study of Single ZnO Nanorods. Journal of Nanoscience and Nanotechnology, 2010, 10, 7158-7161.	0.9	1
381	In situ characterization of optoelectronic nanostructures and nanodevices. Frontiers of Physics in China, 2010, 5, 405-413.	1.0	3
382	Few-Layer Nanoplates of Bi ₂ Se ₃ and Bi ₂ Te ₃ with Highly Tunable Chemical Potential. Nano Letters, 2010, 10, 2245-2250.	4.5	403
383	Topological Insulator Nanowires and Nanoribbons. Nano Letters, 2010, 10, 329-333.	4.5	298
384	Oriented Bi2Se3 nanoribbons film: Structure, growth, and photoelectric properties. Materials Chemistry and Physics, 2010, 124, 865-869.	2.0	23
385	A Waveguideâ€Like Effect Observed in Multiwalled Carbon Nanotube Bundles. Advanced Functional Materials, 2010, 20, 2263-2268.	7.8	5
386	Three-dimensional Bi2Se3 nanopattern films self-assembled with ultrathin nanosheets on the surface of Se nanotubes. Journal of Crystal Growth, 2010, 312, 3455-3460.	0.7	3
387	In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscope. Ultramicroscopy, 2010, 110, 182-189.	0.8	39
388	Aharonov–Bohm interference in topological insulator nanoribbons. Nature Materials, 2010, 9, 225-229.	13.3	727
389	Carbon based high performance doping-free nanoelectronic and optoelectronic devices. , 2010, , .		1
390	Photoelectric performance of TiO2 nanotube array photoelectrodes cosensitized with CdS/CdSe quantum dots. Applied Physics Letters, 2010, 96, .	1.5	61
391	Ultrahigh secondary electron emission of carbon nanotubes. Applied Physics Letters, 2010, 96, .	1.5	22
392	High-performance lithium battery anodes using silicon nanowires. , 2010, , 187-191.		6
393	Large-Scale and Rapid Synthesis of Ultralong ZnO Nanowire Films via Anodization. Journal of Physical Chemistry C, 2010, 114, 881-889.	1.5	60
394	Growth and Performance of Yttrium Oxide as an Ideal High-Î [®] Gate Dielectric for Carbon-Based Electronics. Nano Letters, 2010, 10, 2024-2030.	4.5	137
395	Large Signal Operation of Small Band-Gap Carbon Nanotube-Based Ambipolar Transistor: A High-Performance Frequency Doubler. Nano Letters, 2010, 10, 3648-3655.	4.5	36
396	Current sustainability and electromigration of Pd, Sc and Y thin-films as potential interconnects. Nano-Micro Letters, 2010, 2, 184-189.	14.4	3

Lian-Mao Peng

#	Article	IF	CITATIONS
397	A high-performance top-gate graphene field-effect transistor based frequency doubler. Applied Physics Letters, 2010, 96, .	1.5	113
398	Transmission electron microscope observation of a freestanding nanocrystal in a Coulomb potential well. Nanoscale, 2010, 2, 248-253.	2.8	6
399	A simple route to controllable growth of ZnOnanorod arrays on conducting substrates. CrystEngComm, 2010, 12, 940-946.	1.3	20
400	Current sustainability and electromigration of Pd, Sc and Y thin-films as potential interconnects. Nano-Micro Letters, 2010, 2, 184.	14.4	1
401	Microphotoluminescence study of exciton polaritons guided in ZnO nanorods. Applied Physics Letters, 2009, 95, 173109.	1.5	13
402	Y-Contacted High-Performance n-Type Single-Walled Carbon Nanotube Field-Effect Transistors: Scaling and Comparison with Sc-Contacted Devices. Nano Letters, 2009, 9, 4209-4214.	4.5	150
403	Analytical analysis of heat conduction in a suspended one-dimensional object. Applied Physics Letters, 2009, 95, 143109.	1.5	17
404	Beam to String Transition of Vibrating Carbon Nanotubes Under Axial Tension. Advanced Functional Materials, 2009, 19, 1753-1758.	7.8	41
405	Observation of a 2D Electron Gas and the Tuning of the Electrical Conductance of ZnO Nanowires by Controllable Surface Bandâ€Bending. Advanced Functional Materials, 2009, 19, 2380-2387.	7.8	43
406	Towards Entireâ€Carbonâ€Nanotube Circuits: The Fabrication of Singleâ€Walledâ€Carbonâ€Nanotube Fieldâ€Effect Transistors with Local Multiwalledâ€Carbonâ€Nanotube Interconnects. Advanced Materials, 2009, 21, 1339-1343.	11.1	31
407	Vacancy ordering and lithium insertion in III2VI3 nanowires. Nano Research, 2009, 2, 327-335.	5.8	26
408	Nanoscale Electronic Inhomogeneity in In ₂ Se ₃ Nanoribbons Revealed by Microwave Impedance Microscopy. Nano Letters, 2009, 9, 1265-1269.	4.5	91
409	CdTe Quantum Dots-Sensitized TiO ₂ Nanotube Array Photoelectrodes. Journal of Physical Chemistry C, 2009, 113, 7531-7535.	1.5	292
410	Almost Perfectly Symmetric SWCNT-Based CMOS Devices and Scaling. ACS Nano, 2009, 3, 3781-3787.	7.3	100
411	Optical and Electrical Properties of Ga-Doped ZnO Nanowire Arrays on Conducting Substrates. Journal of Physical Chemistry C, 2009, 113, 8945-8947.	1.5	56
412	Tensile Loading of Double-Walled and Triple-Walled Carbon Nanotubes and their Mechanical Properties. Journal of Physical Chemistry C, 2009, 113, 17002-17005.	1.5	47
413	<i>In situ</i> comprehensive characterization of optoelectronic nanomaterials for device purposes. Nanotechnology, 2009, 20, 175703.	1.3	17
414	Shape Evolution of Layer-Structured Bismuth Oxychloride Nanostructures via Low-Temperature Chemical Vapor Transport. Chemistry of Materials, 2009, 21, 247-252.	3.2	146

#	Article	IF	CITATIONS
415	Visible Light Response of Unintentionally Doped ZnO Nanowire Field Effect Transistors. Journal of Physical Chemistry C, 2009, 113, 16796-16801.	1.5	36
416	Phase transformations in one-dimensional materials: applications in electronics and energy sciences. Journal of Materials Chemistry, 2009, 19, 5879.	6.7	10
417	Photovoltaic Effects in Asymmetrically Contacted CNT Barrier-Free Bipolar Diode. Journal of Physical Chemistry C, 2009, 113, 6891-6893.	1.5	45
418	Transverse dielectric properties of boron nitride nanotubes by <i>ab initio</i> electric field calculations. Applied Physics Letters, 2009, 94, .	1.5	29
419	An Efficient Method To Form Heterojunction CdS/TiO ₂ Photoelectrodes Using Highly Ordered TiO ₂ Nanotube Array Films. Journal of Physical Chemistry C, 2009, 113, 20481-20485.	1.5	182
420	Deriving Carbon Atomic Chains from Graphene. Physical Review Letters, 2009, 102, 205501.	2.9	571
421	Electron Energy Loss Spectroscopy Study on the Dielectric Response of Single H2Ti3O7 Nanotube. Microscopy and Microanalysis, 2009, 15, 1218-1219.	0.2	5
422	In situ TEM measurements of the mechanical properties and behavior of WS2 nanotubes. Nano Research, 2008, 1, 22.	5.8	55
423	Fieldâ€Emission Characteristics of Individual Carbon Nanotubes with a Conical Tip: The Validity of the Fowler–Nordheim Theory and Maximum Emission Current. Small, 2008, 4, 1907-1912.	5.2	24
424	The Veryâ€Low Shear Modulus of Multiâ€Walled Carbon Nanotubes Determined Simultaneously with the Axial Young's Modulus via in situ Experiments. Advanced Functional Materials, 2008, 18, 1555-1562.	7.8	48
425	Hydrothermal Reaction Mechanism and Pathway for the Formation of K ₂ Ti ₆ O ₁₃ Nanowires. Advanced Functional Materials, 2008, 18, 3018-3025.	7.8	25
426	Grinding a Nanotube. Advanced Materials, 2008, 20, 724-728.	11.1	24
427	A Dopingâ€Free Carbon Nanotube CMOS Inverterâ€Based Bipolar Diode and Ambipolar Transistor. Advanced Materials, 2008, 20, 3258-3262.	11.1	66
428	CdS Quantum Dots Sensitized TiO ₂ Nanotube-Array Photoelectrodes. Journal of the American Chemical Society, 2008, 130, 1124-1125.	6.6	1,033
429	Large Anisotropy of Electrical Properties in Layer-Structured In ₂ Se ₃ Nanowires. Nano Letters, 2008, 8, 1511-1516.	4.5	108
430	Controlling electron-beam-induced carbon deposition on carbon nanotubes by Joule heating. Nanotechnology, 2008, 19, 355304.	1.3	25
431	Microphotoluminescence study of individual suspended ZnO nanowires. Applied Physics Letters, 2008, 92, 113112.	1.5	23
432	Reversible switching on superhydrophobic TiO ₂ nano-strawberry films fabricated at low temperature. Chemical Communications, 2008, , 603-605.	2.2	64

#	Article	IF	CITATIONS
433	Self-Aligned Ballistic n-Type Single-Walled Carbon Nanotube Field-Effect Transistors with Adjustable Threshold Voltage. Nano Letters, 2008, 8, 3696-3701.	4.5	154
434	The Field-Emission and Currentâ^'Voltage Characteristics of Individual W ₅ O ₁₄ Nanowires. Journal of Physical Chemistry C, 2008, 112, 5250-5253.	1.5	19
435	Individual Bi ₂ S ₃ Nanowire-Based Room-Temperature H ₂ Sensor. Journal of Physical Chemistry C, 2008, 112, 8721-8724.	1.5	108
436	Quantitative Study on the Effect of Surface Treatments on the Electric Characteristics of ZnO Nanowires. Journal of Physical Chemistry C, 2008, 112, 14225-14228.	1.5	10
437	Quantitative Fitting of Nonlinear Current–Voltage Curves and Parameter Retrieval of Semiconducting Nanowire, Nanotube and Nanoribbon Devices. Journal of Nanoscience and Nanotechnology, 2008, 8, 252-258.	0.9	45
438	<i>In situ</i> electrical measurements of polytypic silver nanowires. Nanotechnology, 2008, 19, 085711.	1.3	36
439	Angular dependent luminescence of individual suspended ZnO nanorods. Applied Physics Letters, 2008, 93, 023117.	1.5	13
440	Self-Retracting Motion of Graphite Microflakes. Physical Review Letters, 2008, 100, 067205.	2.9	193
441	Metal Atom Catalyzed Enlargement of Fullerenes. Physical Review Letters, 2008, 101, 176102.	2.9	27
442	High-performance n-type carbon nanotube field-effect transistors with estimated sub-10-ps gate delay. Applied Physics Letters, 2008, 92, 133117.	1.5	67
443	Self-nucleation free and dimension dependent metal-induced lateral crystallization of amorphous germanium for single crystalline germanium growth on insulating substrate. Journal of Applied Physics, 2008, 104, 064501.	1.1	29
444	Structure and applications of titanate and related nanostructures. International Journal of Nanotechnology, 2007, 4, 44.	0.1	87
445	A Comparative Study on SWCNT and DWCNT Field-Effect Transistors. Journal of Nanoscience and Nanotechnology, 2007, 7, 1568-1572.	0.9	9
446	A very low temperature single crystal germanium growth process on insulating substrate using Ni-induced lateral crystallization for three-dimensional integrated circuits. Applied Physics Letters, 2007, 91, 143107.	1.5	60
447	Fabrication of high performance top-gate complementary inverter using a single carbon nanotube and via a simple process. Applied Physics Letters, 2007, 90, 223116.	1.5	21
448	Phase-Change Nanowires for Non Volatile Memory. Materials Research Society Symposia Proceedings, 2007, 997, 1.	0.1	0
449	Structure of nanosized materials by high-energy X-ray diffraction: study of titanate nanotubes. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, .	0.4	20
450	Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits. Nano Letters, 2007, 7, 3603-3607.	4.5	319

#	Article	IF	CITATIONS
451	Cutting and sharpening carbon nanotubes using a carbon nanotube â€~nanoknife'. Nanotechnology, 2007, 18, 185503.	1.3	33
452	Optical and Electrical Performance of SnO ₂ Capped ZnO Nanowire Arrays. Nano Letters, 2007, 7, 3559-3563.	4.5	113
453	Ordered Vacancy Compounds and Nanotube Formation in CuInSe ₂ â^'CdS Coreâ^'Shell Nanowires. Nano Letters, 2007, 7, 3734-3738.	4.5	77
454	ZnSe Nanobelts and Nanowires Synthesized by a Closed Space Vapor Transport Technique. Journal of Physical Chemistry C, 2007, 111, 2987-2991.	1.5	55
455	Morphology Control of Layer-Structured Gallium Selenide Nanowires. Nano Letters, 2007, 7, 199-203.	4.5	79
456	Synthesis and Phase Transformation of In2Se3 and CuInSe2 Nanowires. Journal of the American Chemical Society, 2007, 129, 34-35.	6.6	158
457	Quantitative Analysis of Current–Voltage Characteristics of Semiconducting Nanowires: Decoupling of Contact Effects. Advanced Functional Materials, 2007, 17, 2478-2489.	7.8	283
458	High-field electrical transport and breakdown behavior of double-walled carbon nanotube field-effect transistors. Carbon, 2007, 45, 760-765.	5.4	9
459	Quantitative analysis of defects and domain boundaries in mesoporous SBA-16 films. Micron, 2007, 38, 362-370.	1.1	5
460	REW– exit-wave reconstruction and alignments for focus-variation high-resolution transmission electron microscopy images. Journal of Applied Crystallography, 2007, 40, 614-614.	1.9	6
461	Establishing Ohmic contacts forin situcurrent–voltage characteristic measurements on a carbon nanotube inside the scanning electron microscope. Nanotechnology, 2006, 17, 1087-1098.	1.3	79
462	Synthesis and Characterizations of Amorphous Carbon Nanotubes by Pyrolysis of Ferrocene Confined within AAM Templates. Journal of Physical Chemistry B, 2006, 110, 8263-8267.	1.2	32
463	Quantitative Analysis of Electron Field-Emission Characteristics of Individual Carbon Nanotubes:Â The Importance of the Tip Structure. Journal of Physical Chemistry B, 2006, 110, 9397-9402.	1.2	36
464	High-Quality Ultralong Sb2Se3 and Sb2S3 Nanoribbons on a Large Scale via a Simple Chemical Route. Journal of Physical Chemistry B, 2006, 110, 13415-13419.	1.2	112
465	Tip Cooling Effect and Failure Mechanism of Field-Emitting Carbon Nanotubes. Nano Letters, 2006, 7, 64-68.	4.5	77
466	Effect of H2on the Electrical Transport Properties of Single Bi2S3Nanowires. Journal of Physical Chemistry B, 2006, 110, 21408-21411.	1.2	29
467	In Situ Fabrication and Graphitization of Amorphous Carbon Nanowires and Their Electrical Properties. Journal of Physical Chemistry B, 2006, 110, 5423-5428.	1.2	60
468	On the phenomenological nature of the work function as determined from electron field–emission experiments on nanotubes and nanowires. Surface and Interface Analysis, 2006, 38, 1073-1077.	0.8	4

#	Article	IF	CITATIONS
469	Shaping Carbon Nanotubes and the Effects on Their Electrical and Mechanical Properties. Advanced Functional Materials, 2006, 16, 1462-1468.	7.8	53
470	The wrap-around problem and optimal padding in the exit wave reconstruction using HRTEM images. Journal of Electron Microscopy, 2006, 55, 191-200.	0.9	5
471	Preparation and characterization of Fe-incorporated titanate nanotubes. Nanotechnology, 2006, 17, 5423-5427.	1.3	29
472	Engineering the cap structure of individual carbon nanotubes and corresponding electron field emission characteristics. Applied Physics Letters, 2006, 88, 243108.	1.5	53
473	Switching electron current in a semiconductor nanowire via controlling the carrier injection from the electrode. Applied Physics Letters, 2006, 89, 213108.	1.5	15
474	Field Effect and Photoelectronic Property of Nanodevices Made from Single Bi2S3 Nanowire. , 2006, , .		2
475	In situgrowth and characterization of Ag and Cu nanowires. Nanotechnology, 2006, 17, S376-S380.	1.3	19
476	Total energy of charged carbon nanotubes and single-electron tunneling. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 27, 26-31.	1.3	1
477	Porous crystalline iron oxide thin films templated by mesoporous silica. Microporous and Mesoporous Materials, 2005, 83, 219-224.	2.2	19
478	In-situ studies of electron field emission of single carbon nanotubes inside the TEM. Carbon, 2005, 43, 1026-1031.	5.4	61
479	Synthesis and characterization of large scale potassium titanate nanowires with good Li-intercalation performance. Chemical Physics Letters, 2005, 406, 95-100.	1.2	38
480	Defects and domain structures in SBA-16 mesoporous films with 3D cubic structure. Chemical Physics Letters, 2005, 411, 463-467.	1.2	7
481	Fabrication and Electrical and Mechanical Properties of Carbon Nanotube Interconnections. Advanced Functional Materials, 2005, 15, 1825-1831.	7.8	161
482	Synthesis and characterization of crystalline microporous cobalt phosphite nanowires. Applied Physics Letters, 2005, 87, 173122.	1.5	20
483	Strain-induced formation of K2Ti6O13 nanowires via ion exchange. Applied Physics Letters, 2005, 86, 133101.	1.5	38
484	Interplay of single-wall carbon nanotubes and encapsulatedLa@C82,La2@C80, andSc3N@C80. Physical Review B, 2005, 71, .	1.1	18
485	Scanning tunneling microscope-based thermochemical hole burning on a series of charge transfer complexes. Applied Physics Letters, 2005, 86, 133105.	1.5	9
486	Electron atomic scattering factors, Debye–Waller factors and the optical potential for high-energy electron diffraction. Microscopy (Oxford, England), 2005, 54, 199-207.	0.7	12

#	Article	IF	CITATIONS
487	Field-Effect Characteristics and Screening in Double-Walled Carbon Nanotube Field-Effect Transistors. Journal of Physical Chemistry B, 2005, 109, 17361-17365.	1.2	50
488	Electron Field Emission Characteristics and Field Evaporation of a Single Carbon Nanotube. Journal of Physical Chemistry B, 2005, 109, 110-113.	1.2	78
489	Thermochemical Hole Burning on a Triethylammonium Bis-7,7,8,8-tetracyanoquinodimethane Charge-Transfer Complex Using Single-Walled Carbon Nanotube Scanning Tunneling Microscopy Tips. Journal of Physical Chemistry B, 2005, 109, 3526-3530.	1.2	23
490	High-Quality Ultralong Sb2S3 Nanoribbons on Large Scale. Journal of Physical Chemistry B, 2005, 109, 23312-23315.	1.2	55
491	High-Quality Ultralong Bi2S3 Nanowires:  Structure, Growth, and Properties. Journal of Physical Chemistry B, 2005, 109, 18772-18776.	1.2	137
492	Electron side-emission from corrugated CNx nanotubes. Applied Physics Letters, 2004, 85, 4753-4755.	1.5	37
493	Controlled cleavage of single semiconducting nanowires and study on the suitability of their use as nanocavities for nanolasers. Applied Physics Letters, 2004, 84, 4920-4922.	1.5	5
494	Performing probe experiments in the SEM. Micron, 2004, 35, 495-502.	1.1	42
495	Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes. Advanced Materials, 2004, 16, 401-405.	11.1	1,840
496	Growth of compound single- and multi-walled carbon nanotubes. Ultramicroscopy, 2004, 98, 195-200. Counterion-driven spontaneous polymerization of the linear smml:math altimg= s14, gif	0.8	2
497	display="inline" overflow="scroll" xmlns:xocs="nttp://www.elsevier.com/xml/xocs/dtd xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.2	5
498	A new approach to simulate the depolymerization process of a two-dimensional hexagonal C60 polymer. Chemical Physics Letters, 2004, 398, 486-488.	1.2	2
499	Hexaniobate nanotubes with variable interlayer spacings. Chemical Physics Letters, 2004, 400, 536-540.	1.2	15
500	Synthesis, modification and characterization of K4Nb6O17-type nanotubes. Journal of Materials Chemistry, 2004, 14, 1437.	6.7	65
501	Amphoteric and Controllable Doping of Carbon Nanotubes by Encapsulation of Organic and Organometallic Molecules. Physical Review Letters, 2004, 93, 116804.	2.9	106
502	Energetic, geometric, and electronic evolutions of K-doped single-wall carbon nanotube ropes with K intercalation concentration. Physical Review B, 2004, 69, .	1.1	35
503	Thermochemical Hole Burning on DPA(TCNQ)2 and MEM(TCNQ)2 Charge Transfer Complexes Using a Scanning Tunneling Microscope. Journal of Physical Chemistry B, 2004, 108, 14800-14803.	1.2	10
504	Positive electron affinity of fullerenes: Its effect and origin. Journal of Chemical Physics, 2004, 120, 7998-8001.	1.2	35

#	Article	IF	CITATIONS
505	Field emission patterns with atomic resolution of single-walled carbon nanotubes by field emission microscopy. Science in China Series G: Physics, Mechanics and Astronomy, 2003, 46, 33.	0.2	5
506	Formation Mechanism ofH2Ti3O7Nanotubes. Physical Review Letters, 2003, 91, 256103.	2.9	331
507	Energetics of high temperature dimer desorption and reconstruction at the end of small zigzag carbon nanotubes. Chemical Physics Letters, 2003, 368, 20-26.	1.2	4
508	Controlled synthesis and phase transformation of ferrous nanowires inside carbon nanotubes. Chemical Physics Letters, 2003, 375, 59-64.	1.2	16
509	Synthesis and characterization of K2Ti6O13 nanowires. Chemical Physics Letters, 2003, 376, 726-731.	1.2	71
510	Exfoliating KTiNbO5 particles into nanosheets. Chemical Physics Letters, 2003, 377, 445-448.	1.2	32
511	Calculations of adsorption of O2and H2O on a carbon nanotube tip in field-emission conditions. Journal Physics D: Applied Physics, 2003, 36, 3034-3038.	1.3	6
512	A simple method for coating carbon nanotubes with Co–B amorphous alloy. Materials Letters, 2003, 57, 1339-1344.	1.3	46
513	Fe2O3 particles encapsulated inside aligned CNx nanotubes. Applied Physics Letters, 2003, 82, 3319-3321.	1.5	21
514	Imaging helical potassium hexaniobate nanotubes. Applied Physics Letters, 2003, 83, 1638-1640.	1.5	23
515	Theoretical identification ofC20carbon clusters: Prevalence of the monocyclic isomer and existence of the smallest fullerene and bowl isomer. Physical Review B, 2003, 67, .	1.1	22
516	Structure and growth of monoclinic Mo2S3 nanorods. Applied Physics Letters, 2003, 83, 3561-3563.	1.5	19
517	Strongly size-dependent electronic properties inC60-encapsulated zigzag nanotubes and lower size limit of carbon nanopeapods. Physical Review B, 2003, 68, .	1.1	38
518	Mesoporous silicas of hierarchical structure by hydrothermal surfactant-templating under mild alkali conditions. Studies in Surface Science and Catalysis, 2002, 141, 133-140.	1.5	3
519	Morphosynthesis of Vesicular Mesostructured Calcium Phosphate under Electron Irradiation. Langmuir, 2002, 18, 2450-2452.	1.6	35
520	Preparation of Fe-filled carbon nanotubes by catalytic decomposition of cyclohexane. Synthetic Metals, 2002, 128, 191-195.	2.1	39
521	Room-Temperature Synthesis in Acidic Media of Large-Pore Three-Dimensional Bicontinuous Mesoporous Silica with Ia3d Symmetry. Angewandte Chemie - International Edition, 2002, 41, 3876-3878.	7.2	269
522	Trititanate Nanotubes Made via a Single Alkali Treatment. Advanced Materials, 2002, 14, 1208-1211.	11.1	806

#	Article	IF	CITATIONS
523	The structure of trititanate nanotubes. Acta Crystallographica Section B: Structural Science, 2002, 58, 587-593.	1.8	433
524	The small terrace size approximation in the theory of RHEED oscillations. Journal of Crystal Growth, 2002, 235, 79-88.	0.7	9
525	Formation energetics of n-member rings at the end of small zigzag carbon nanotubes. Chemical Physics Letters, 2002, 358, 103-109.	1.2	2
526	Coexistence of ferromagnetism and superconductivity in Cu-rich lanthanum Cu-oxides. European Physical Journal B, 2002, 25, 19-23.	0.6	0
527	Title is missing!. European Physical Journal B, 2002, 25, 19-23.	0.6	4
528	Preparation and structure analysis of titanium oxide nanotubes. Applied Physics Letters, 2001, 79, 3702-3704.	1.5	553
529	Co/carbon-nanotube monometallic system: the effects of oxidation by nitric acid. Physical Chemistry Chemical Physics, 2001, 3, 2518-2521.	1.3	54
530	The role of excess Cu on La2CuO4 system. Physica C: Superconductivity and Its Applications, 2001, 350, 127-131.	0.6	2
531	New electric features in Cu-rich La2CuO4+l̂´system. Physica C: Superconductivity and Its Applications, 2001, 364-365, 446-449.	0.6	0
532	Morphogenesis of surface patterns and incorporation of redox-active metals in mesoporous silicate molecular sieves. Surface and Interface Analysis, 2001, 32, 193-197.	0.8	11
533	Controlled Synthesis of Carbon-Encapsulated Co Nanoparticles by CVD. Chemical Vapor Deposition, 2001, 7, 248-251.	1.4	22
534	Superconducting phases, charge ordering and possible correlation between them in La2CuO4.12. Superconductor Science and Technology, 2001, 14, 398-405.	1.8	5
535	Synthesis of Microporous Silica in the Presence of Dodecyldimethylbenzylammonium Chloride Surfactant. Chemistry Letters, 2000, 29, 1150-1151.	0.7	5
536	High-resolution transmission electron microscopy investigations of a highly adhesive hydroxyapatite coating/titanium interface fabricated by ion-beam-assisted deposition. Journal of Biomedical Materials Research Part B, 2000, 52, 115-118.	3.0	14
537	Quasi-dynamical electron diffraction – a kinematic type of expression for the dynamical diffracted-beam amplitudes. Acta Crystallographica Section A: Foundations and Advances, 2000, 56, 511-518.	0.3	13
538	Debye–Waller factors of compounds with the caesium chloride structure. Acta Crystallographica Section A: Foundations and Advances, 2000, 56, 519-524.	0.3	4
539	Incommensurate valence modulation in high- T c cuprates. Micron, 2000, 31, 551-557.	1.1	3
540	Automated identification of symmetry in CBED patterns: a genetic approach. Ultramicroscopy, 2000, 84, 47-56.	0.8	9

#	Article	IF	CITATIONS
541	Surface structural sensitivity of convergent-beam RHEED: Si (001) 2×1 models compared with dynamical simulations. Ultramicroscopy, 2000, 81, 235-244.	0.8	5
542	Single wall carbon nanotubes and their electrical properties. Science in China Series A: Mathematics, 2000, 43, 1182-1188.	0.5	2
543	Charge modulations inLa2CuO4-based cuprates. Physical Review B, 2000, 62, 189-195.	1.1	10
544	Stability of Carbon Nanotubes: How Small Can They Be?. Physical Review Letters, 2000, 85, 3249-3252.	2.9	142
545	Filling of single-walled carbon nanotubes with silver. Journal of Materials Research, 2000, 15, 2658-2661.	1.2	37
546	Correlation effects in the ground-state charge density of Mott insulating NiO: A comparison ofab initiocalculations and high-energy electron diffraction measurements. Physical Review B, 2000, 61, 2506-2512.	1.1	49
547	Modulation structure and phase transformation in a Cu-rich La-Cu-O oxide. Physical Review B, 1999, 59, 3489-3493.	1.1	7
548	Parameterization of the temperature dependence of the Debye–Waller factors. Acta Crystallographica Section A: Foundations and Advances, 1999, 55, 926-932.	0.3	136
549	Lattice dynamics and Debye–Waller factors of some compounds with the sodium chloride structure. Acta Crystallographica Section A: Foundations and Advances, 1999, 55, 1014-1025.	0.3	17
550	Anisotropic dispersion of the band structure and formation of ring patterns in CBED. Acta Crystallographica Section A: Foundations and Advances, 1999, 55, 1026-1033.	0.3	3
551	Electron atomic scattering factors and scattering potentials of crystals. Micron, 1999, 30, 625-648.	1.1	112
552	Observation of ferromagnetic correlation in phase-separated Cu-rich La2CuO4.003. Solid State Communications, 1998, 108, 949-952.	0.9	2
553	Electron Scattering Factors of Ions and their Parameterization. Acta Crystallographica Section A: Foundations and Advances, 1998, 54, 481-485.	0.3	49
554	Thermal stability of electrical and magnetic properties of a nanocrystalline Hf-Ni alloy. Philosophical Magazine Letters, 1998, 77, 345-350.	0.5	2
555	Void-like defects in annealed Czochralski silicon. Applied Physics Letters, 1998, 73, 2311-2312.	1.5	2
556	Accurate measurement of phase shift in electron holography. Applied Physics Letters, 1998, 72, 771-773.	1.5	7
557	Direct Observation of Incommensurate Modulation in Phase-Separated Cu-RichLa2CuO4.003. Physical Review Letters, 1998, 80, 2701-2704.	2.9	28
558	Electron scattering factors of ions and dynamical RHEED from surfaces of ionic crystals. Physical Review B, 1998, 57, 7259-7265.	1.1	19

#	Article	IF	CITATIONS
559	Ionicity of nickel oxide: Direct determination by reflection diffraction of high-energy electrons from the (100) surface. Physical Review B, 1997, 56, 15314-15319.	1.1	8
560	Epitaxial dependence of the melting behavior of In nanoparticles embedded in Al matrices. Journal of Materials Research, 1997, 12, 119-123.	1.2	62
561	Direct retrieval of crystal and surface structures using high energy electrons. Micron, 1997, 28, 159-173.	1.1	4
562	Accurate measurements of crystal structure factors using a FEG electron microscope. Micron, 1997, 28, 459-467.	1.1	22
563	Anisotropic Thermal Vibrations and Dynamical Electron Diffraction by Crystals. Acta Crystallographica Section A: Foundations and Advances, 1997, 53, 663-672.	0.3	30
564	Bethe potentials in dynamical RHEED calculations. Surface Science, 1996, 351, L245-L252.	0.8	4
565	Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices. Philosophical Magazine Letters, 1996, 73, 179-186.	0.5	133
566	Robust Parameterization of Elastic and Absorptive Electron Atomic Scattering Factors. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, 257-276.	0.3	170
567	Debye–Waller Factors and Absorptive Scattering Factors of Elemental Crystals. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, 456-470.	0.3	189
568	Dynamical RHEED Calculations from the Surface of a Semi-Infinite Crystal. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, 471-475.	0.3	5
569	Approximate Methods in Dynamical RHEED Calculations. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, 909-922.	0.3	4
570	Direct retrieval of crystal structure factors in THEED. Ultramicroscopy, 1995, 57, 1-9.	0.8	20
571	On the Doyle-Turner representation of the optical potential for RHEED calculations. Surface Science, 1995, 330, 86-100.	0.8	53
572	LACBED determination of structure factors and alloy composition of GeSi/Si SLS. Ultramicroscopy, 1994, 55, 67-73.	0.8	1
573	On the validity of the direct phasing and Fourier method in electron crystallography. Acta Crystallographica Section A: Foundations and Advances, 1994, 50, 759-771.	0.3	9
574	Bloch wave origin of surface resonance scattering in RHEED. Surface Science, 1994, 316, L1049-L1054.	0.8	3
575	New Developments of Electron Diffraction Theory. Advances in Imaging and Electron Physics, 1994, 90, 205-351.	0.1	6
576	Evidence for the damping of coherence in inelastic scattering of high-energy electrons by crystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 175, 461-464.	0.9	10

#	Article	IF	CITATIONS
577	Direct determination of crystal and surface structures in THEED. Ultramicroscopy, 1993, 52, 312-317.	0.8	6
578	Distorted wave approach to diffuse scattering in THEED and RHEED. Ultramicroscopy, 1993, 52, 393-399.	0.8	2
579	Reflection electron imaging of semiconductor multilayer materials. Ultramicroscopy, 1993, 48, 453-463.	0.8	2
580	Tensor theories of high energy electron diffraction and their use in surface crystallography. Surface Science, 1993, 298, 316-330.	0.8	7
581	Theory of bulk resonance diffraction in THEED. Proceedings of the Royal Society A, 1993, 440, 95-115.	1.0	5
582	Effects of bulk resonance diffraction on inelastic scattering of high-energy electrons by crystals. Proceedings of the Royal Society A, 1993, 440, 117-133.	1.0	5
583	The effect of the surface on thermal diffuse intensities in reflection high energy electron diffraction. Proceedings of the Royal Society A, 1993, 440, 567-588.	1.0	18
584	Correlations in space and time and dynamical diffraction of high-energy electrons by crystals. Physical Review B, 1993, 48, 13408-13429.	1.1	94
585	Application of reflection electron microscopy in cross-sectional study of multilayer semiconductor devices. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1992, 10, 2293.	1.6	1
586	Reflection electron microscopy imaging of GaAs/AlxGa1â^'xAs multilayer materials. Philosophical Magazine Letters, 1992, 66, 9-17.	0.5	2
587	A treatment of RHEED from a rough surface of a crystal by an optical potential method. Surface Science, 1992, 279, 380-394.	0.8	24
588	An isolating algorithm for automated surface structure determination using RHEED. Surface Science, 1992, 268, L325-L329.	0.8	5
589	Many-beam simulations and observations of large-angle convergent-beam electron diffraction imaging of crystal defects. Philosophical Magazine Letters, 1992, 66, 225-233.	0.5	5
590	On the damping of coherence in the small-angle inelastic scattering of high-energy electrons by crystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 170, 111-115.	0.9	7
591	Matrix description of dynamical HOLZ diffraction tested on the strained layer superlattice Si/GeSi. Ultramicroscopy, 1992, 45, 405-409.	0.8	8
592	Bloch wave treatment of symmetry and multiple beam cases in reflection high energy electron diffraction and reflection electron microscopy. Microscopy Research and Technique, 1992, 20, 360-370.	1.2	1
593	Studies on the etching and annealing behaviour of αâ^'Al2O3(1012) surfaces by reflection electron microscopy. Surface Science, 1991, 243, 210-218.	0.8	16
594	Dynamical calculations for RHEED from MBE growing surfaces. II. Growth interruption and surface recovery. Proceedings of the Royal Society A, 1991, 435, 257-267.	1.0	13

#	Article	IF	CITATIONS
595	Dynamical calculations for RHEED from MBE growing surfaces. III. Heteroepitaxial growth and interface formation. Proceedings of the Royal Society A, 1991, 435, 269-286.	1.0	4
596	Dynamical calculations for RHEED from MBE growing surfaces. I. Growth on a low-index surface. Proceedings of the Royal Society A, 1991, 432, 195-213.	1.0	15
597	Reflection electron microscopy observations of dislocations and dislocation motion in zinc oxide. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 64, 533-541.	0.8	6
598	The origins of electron back-scattering circular patterns. Surface Science Letters, 1991, 244, L133-L136.	0.1	0
599	On the uncoupling of surface superlattice reflections in TED analysis of reconstructed surfaces. Acta Crystallographica Section A: Foundations and Advances, 1991, 47, 101-109.	0.3	8
600	Surface superlattice reflections and kinematical approximation in RHEED. Acta Crystallographica Section A: Foundations and Advances, 1991, 47, 95-101.	0.3	3
601	Dynamical effects of thermal diffuse scattering in RHEED. Acta Crystallographica Section A: Foundations and Advances, 1991, 47, 170-176.	0.3	17
602	A combined REM and WTEM study of GaAs/Al _x Ga _{l-x} As multilayer structures. Philosophical Magazine Letters, 1991, 64, 261-267.	0.5	2
603	Illumination of crystal surfaces in the electron microscope under RHEED and REM geometry. Ultramicroscopy, 1990, 32, 169-175.	0.8	4
604	A general matrix representation of the dynamical theory of electron diffraction. I. General theory. Proceedings of the Royal Society A, 1990, 431, 111-123.	1.0	24
605	A general matrix representation of the dynamical theory of electron diffraction. II. Application to rheed from relaxed and reconstructed surfaces. Proceedings of the Royal Society A, 1990, 431, 125-142.	1.0	4
606	Dynamical RHEED from MBE growing surfaces. Surface Science, 1990, 238, L446-L452.	0.8	50
607	Bloch-wave channeling and HOLZ effects in high-energy electron diffraction. Acta Crystallographica Section A: Foundations and Advances, 1989, 45, 699-703.	0.3	22
608	REM observation of electron-beam-induced reactions on GaAs(110) surface. Ultramicroscopy, 1989, 27, 423-426.	0.8	1
609	Reflection electron imaging of free surfaces and surface/dislocation interactions. Ultramicroscopy, 1989, 29, 135-146.	0.8	13
610	Thermal diffuse scattering and REM image-contrast preservation. Ultramicroscopy, 1989, 29, 168-174.	0.8	7
611	A note on the general bloch wave theory and boundary problems in RHEED and REM. Surface Science, 1989, 222, 296-312.	0.8	9
612	Errors arising from numerical use of the Mott formula in electron image simulation. Acta Crystallographica Section A: Foundations and Advances, 1988, 44, 1-6.	0.3	15

#	Article	IF	CITATIONS
613	Surface resonance effects and beam convergence in REM. Ultramicroscopy, 1988, 26, 161-167.	0.8	11
614	The observation of surface resonance effects in RHEED patterns. Ultramicroscopy, 1988, 26, 189-194.	0.8	26
615	Diffuse diffraction spots in RHEED patterns. Ultramicroscopy, 1988, 26, 227-232.	0.8	8
616	EELS analysis of surface-channelled electrons. Surface Science, 1988, 204, 555-567.	0.8	7
617	Experimental studies of surface resonance scattering processes in rheed. Surface Science, 1988, 201, 559-572.	0.8	17
618	A multislice approach to the RHEED and REM calculation. Surface Science, 1988, 199, 609-622.	0.8	22
619	Reflection electron microscopy methods for the study of surface structure. Journal of Microscopy, 1987, 146, 17-27.	0.8	6
620	Diffraction contrast in reflection electron microscopy—II. Surface steps and dislocations under the surface. Micron and Microscopica Acta, 1987, 18, 179-186.	0.2	18
621	Geometric analysis of surface resonance conditions in reflection high energy electron diffraction. Journal of Electron Microscopy Technique, 1987, 6, 43-53.	1.1	35
622	Effects of the coherence of illumination on electron microdiffraction pattern intensities. Journal of Electron Microscopy Technique, 1987, 7, 177-183.	1.1	6
623	Diffraction contrast in reflection electron microscopy—I. Screw dislocation. Micron and Microscopica Acta, 1987, 18, 171-178.	0.2	22
624	Experimental studies of atomic step contrast in reflection electron microscopy (REM). Ultramicroscopy, 1987, 22, 217-224.	0.8	44
625	Dynamical diffraction calculations for RHEED and REM. Acta Crystallographica Section A: Foundations and Advances, 1986, 42, 545-552.	0.3	118
626	The image contrast of surface steps in reflection electron microscopy. Ultramicroscopy, 1985, 16, 59-67.	0.8	71
627	High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. , 0, .		1
628	High-performance lithium battery anodes using silicon nanowires. , 0, .		1