Lian-Mao Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7541781/publications.pdf

Version: 2024-02-01

4203 2795 39,730 628 94 174 citations h-index g-index papers 637 637 637 36548 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes. Advanced Materials, 2004, 16, 401-405.	11.1	1,840
2	CdS Quantum Dots Sensitized TiO ₂ Nanotube-Array Photoelectrodes. Journal of the American Chemical Society, 2008, 130, 1124-1125.	6.6	1,033
3	Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications, 2012, 3, 699.	5.8	985
4	Trititanate Nanotubes Made via a Single Alkali Treatment. Advanced Materials, 2002, 14, 1208-1211.	11.1	806
5	Aharonov–Bohm interference in topological insulator nanoribbons. Nature Materials, 2010, 9, 225-229.	13.3	727
6	Toward Clean and Crackless Transfer of Graphene. ACS Nano, 2011, 5, 9144-9153.	7.3	701
7	Hierarchical Graphene Foam for Efficient Omnidirectional Solar–Thermal Energy Conversion. Advanced Materials, 2017, 29, 1702590.	11.1	675
8	Deriving Carbon Atomic Chains from Graphene. Physical Review Letters, 2009, 102, 205501.	2.9	571
9	Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In ₂ Se ₃ Nanoflakes. Nano Letters, 2017, 17, 5508-5513.	4.5	567
10	Preparation and structure analysis of titanium oxide nanotubes. Applied Physics Letters, 2001, 79, 3702-3704.	1.5	553
11	Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355, 271-276.	6.0	526
12	High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nature Nanotechnology, 2017, 12, 530-534.	15.6	507
13	Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Science Bulletin, 2017, 62, 1074-1080.	4.3	454
14	The structure of trititanate nanotubes. Acta Crystallographica Section B: Structural Science, 2002, 58, 587-593.	1.8	433
15	Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Letters, 2015, 15, 4206-4213.	4.5	410
16	Few-Layer Nanoplates of Bi ₂ Se ₃ and Bi ₂ Te ₃ with Highly Tunable Chemical Potential. Nano Letters, 2010, 10, 2245-2250.	4.5	403
17	Synthesis challenges for graphene industry. Nature Materials, 2019, 18, 520-524.	13.3	389
18	Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition. Nano Letters, 2011, 11, 1106-1110.	4.5	365

#	Article	IF	Citations
19	Two-Dimensional (C ₄ H ₉ NH ₃) ₂ PbBr ₄ Perovskite Crystals for High-Performance Photodetector. Journal of the American Chemical Society, 2016, 138, 16612-16615.	6.6	341
20	Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nature Communications, 2015, 6, 8569.	5.8	336
21	Formation Mechanism of H2Ti3O7Nanotubes. Physical Review Letters, 2003, 91, 256103.	2.9	331
22	Machineâ€Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns. Advanced Materials, 2016, 28, 10267-10274.	11.1	328
23	Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits. Nano Letters, 2007, 7, 3603-3607.	4.5	319
24	Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nature Chemistry, 2012, 4, 281-286.	6.6	309
25	Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 2020, 368, 850-856.	6.0	308
26	Topological Insulator Nanowires and Nanoribbons. Nano Letters, 2010, 10, 329-333.	4.5	298
27	CdTe Quantum Dots-Sensitized TiO ₂ Nanotube Array Photoelectrodes. Journal of Physical Chemistry C, 2009, 113, 7531-7535.	1.5	292
28	Quantitative Analysis of Current–Voltage Characteristics of Semiconducting Nanowires: Decoupling of Contact Effects. Advanced Functional Materials, 2007, 17, 2478-2489.	7.8	283
29	Rollâ€ŧoâ€Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator. Advanced Materials, 2015, 27, 5210-5216.	11.1	273
30	Room-Temperature Synthesis in Acidic Media of Large-Pore Three-Dimensional Bicontinuous Mesoporous Silica with Ia3d Symmetry. Angewandte Chemie - International Edition, 2002, 41, 3876-3878.	7.2	269
31	Carbon nanotube electronics: recent advances. Materials Today, 2014, 17, 433-442.	8.3	267
32	Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene. Chemical Reviews, 2018, 118, 9281-9343.	23.0	260
33	Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes. Nano Letters, 2017, 17, 3681-3687.	4. 5	241
34	Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science, 2018, 361, 387-392.	6.0	226
35	Controlled Synthesis of High-Mobility Atomically Thin Bismuth Oxyselenide Crystals. Nano Letters, 2017, 17, 3021-3026.	4.5	222
36	Superlubricity between MoS ₂ Monolayers. Advanced Materials, 2017, 29, 1701474.	11.1	220

#	Article	IF	Citations
37	Toward Mass Production of CVD Graphene Films. Advanced Materials, 2019, 31, e1800996.	11.1	218
38	Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nature Communications, 2018, 9, 3311.	5.8	213
39	Controlled synthesis of single-crystal SnSe nanoplates. Nano Research, 2015, 8, 288-295.	5.8	207
40	Organohalide lead perovskite based photodetectors with much enhanced performance. Chemical Communications, 2014, 50, 13695-13697.	2.2	206
41	Synthesis of Hierarchical Graphdiyne-Based Architecture for Efficient Solar Steam Generation. Chemistry of Materials, 2017, 29, 5777-5781.	3.2	206
42	High-performance sub-10 nm monolayer Bi ₂ O ₂ Se transistors. Nanoscale, 2019, 11, 532-540.	2.8	196
43	Self-Retracting Motion of Graphite Microflakes. Physical Review Letters, 2008, 100, 067205.	2.9	193
44	Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nature Communications, 2015, 6, 6519.	5.8	190
45	Debye–Waller Factors and Absorptive Scattering Factors of Elemental Crystals. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, 456-470.	0.3	189
46	An Efficient Method To Form Heterojunction CdS/TiO ₂ Photoelectrodes Using Highly Ordered TiO ₂ Nanotube Array Films. Journal of Physical Chemistry C, 2009, 113, 20481-20485.	1.5	182
47	Designed CVD Growth of Graphene via Process Engineering. Accounts of Chemical Research, 2013, 46, 2263-2274.	7.6	172
48	Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nature Communications, 2015, 6, 6972.	5.8	172
49	Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS Nano, 2017, 11, 12337-12345.	7.3	172
50	Robust Parameterization of Elastic and Absorptive Electron Atomic Scattering Factors. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, 257-276.	0.3	170
51	Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi ₂ O ₂ Se. Science Advances, 2018, 4, eaat8355.	4.7	167
52	Fabrication and Electrical and Mechanical Properties of Carbon Nanotube Interconnections. Advanced Functional Materials, 2005, 15, 1825-1831.	7.8	161
53	Synthesis and Phase Transformation of In2Se3 and CuInSe2 Nanowires. Journal of the American Chemical Society, 2007, 129, 34-35.	6.6	158
54	Self-Aligned Ballistic n-Type Single-Walled Carbon Nanotube Field-Effect Transistors with Adjustable Threshold Voltage. Nano Letters, 2008, 8, 3696-3701.	4.5	154

#	Article	IF	CITATIONS
55	Tunable, Ultrasensitive, and Flexible Pressure Sensors Based on Wrinkled Microstructures for Electronic Skins. ACS Applied Materials & Interfaces, 2019, 11, 21218-21226.	4.0	151
56	Y-Contacted High-Performance n-Type Single-Walled Carbon Nanotube Field-Effect Transistors: Scaling and Comparison with Sc-Contacted Devices. Nano Letters, 2009, 9, 4209-4214.	4.5	150
57	Shape Evolution of Layer-Structured Bismuth Oxychloride Nanostructures via Low-Temperature Chemical Vapor Transport. Chemistry of Materials, 2009, 21, 247-252.	3.2	146
58	CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nature Communications, 2012, 3, 677.	5.8	145
59	Stability of Carbon Nanotubes: How Small Can They Be?. Physical Review Letters, 2000, 85, 3249-3252.	2.9	142
60	Chemical Patterning of Highâ∈Mobility Semiconducting 2D Bi ₂ O ₂ Se Crystals for Integrated Optoelectronic Devices. Advanced Materials, 2017, 29, 1704060.	11.1	142
61	A native oxide high-κ gate dielectric for two-dimensional electronics. Nature Electronics, 2020, 3, 473-478.	13.1	141
62	High-Quality Ultralong Bi2S3 Nanowires:  Structure, Growth, and Properties. Journal of Physical Chemistry B, 2005, 109, 18772-18776.	1.2	137
63	Growth and Performance of Yttrium Oxide as an Ideal High-l̂º Gate Dielectric for Carbon-Based Electronics. Nano Letters, 2010, 10, 2024-2030.	4.5	137
64	Parameterization of the temperature dependence of the Debye–Waller factors. Acta Crystallographica Section A: Foundations and Advances, 1999, 55, 926-932.	0.3	136
65	Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nature Communications, 2016, 7, 10699.	5.8	136
66	Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices. Philosophical Magazine Letters, 1996, 73, 179-186.	0.5	133
67	Efficient photovoltage multiplication in carbon nanotubes. Nature Photonics, 2011, 5, 672-676.	15.6	133
68	Towards super-clean graphene. Nature Communications, 2019, 10, 1912.	5.8	133
69	Gigahertz integrated circuits based on carbon nanotube films. Nature Electronics, 2018, 1, 40-45.	13.1	132
70	Quantum Capacitance Limited Vertical Scaling of Graphene Field-Effect Transistor. ACS Nano, 2011, 5, 2340-2347.	7.3	128
71	Surface Monocrystallization of Copper Foil for Fast Growth of Large Singleâ€Crystal Graphene under Free Molecular Flow. Advanced Materials, 2016, 28, 8968-8974.	11.1	128
72	High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. ACS Nano, 2017, 11, 4124-4132.	7. 3	127

#	Article	IF	CITATIONS
73	Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nature Communications, 2015, 6, 6099.	5.8	120
74	Dynamical diffraction calculations for RHEED and REM. Acta Crystallographica Section A: Foundations and Advances, 1986, 42, 545-552.	0.3	118
75	Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries. Chemical Communications, 2015, 51, 13787-13790.	2.2	118
76	Optical and Electrical Performance of SnO ₂ Capped ZnO Nanowire Arrays. Nano Letters, 2007, 7, 3559-3563.	4.5	113
77	A high-performance top-gate graphene field-effect transistor based frequency doubler. Applied Physics Letters, 2010, 96, .	1.5	113
78	Greatly Enhanced Anticorrosion of Cu by Commensurate Graphene Coating. Advanced Materials, 2018, 30, 1702944.	11.1	113
79	Electron atomic scattering factors and scattering potentials of crystals. Micron, 1999, 30, 625-648.	1.1	112
80	High-Quality Ultralong Sb2Se3 and Sb2S3 Nanoribbons on a Large Scale via a Simple Chemical Route. Journal of Physical Chemistry B, 2006, 110, 13415-13419.	1.2	112
81	Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Applied Physics Letters, 2013, 102, .	1.5	112
82	Creating One-Dimensional Nanoscale Periodic Ripples in a Continuous Mosaic Graphene Monolayer. Physical Review Letters, 2014, 113, 086102.	2.9	111
83	Carbon nanotube digital electronics. Nature Electronics, 2019, 2, 499-505.	13.1	111
84	Wafer-Scale Uniform Carbon Nanotube Transistors for Ultrasensitive and Label-Free Detection of Disease Biomarkers. ACS Nano, 2020, 14, 8866-8874.	7.3	110
85	Large Anisotropy of Electrical Properties in Layer-Structured In ₂ Se ₃ Nanowires. Nano Letters, 2008, 8, 1511-1516.	4.5	108
86	Individual Bi ₂ S ₃ Nanowire-Based Room-Temperature H ₂ Sensor. Journal of Physical Chemistry C, 2008, 112, 8721-8724.	1.5	108
87	Amphoteric and Controllable Doping of Carbon Nanotubes by Encapsulation of Organic and Organometallic Molecules. Physical Review Letters, 2004, 93, 116804.	2.9	106
88	Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Physical Review B, 2014, 90, .	1.1	106
89	Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. Nano Letters, 2016, 16, 5120-5128.	4.5	101
90	Almost Perfectly Symmetric SWCNT-Based CMOS Devices and Scaling. ACS Nano, 2009, 3, 3781-3787.	7.3	100

#	Article	IF	Citations
91	Repeated Growth–Etching–Regrowth for Large-Area Defect-Free Single-Crystal Graphene by Chemical Vapor Deposition. ACS Nano, 2014, 8, 12806-12813.	7.3	100
92	Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes. ACS Nano, 2017, 11, 186-193.	7.3	100
93	Thickness-Dependent Dielectric Constant of Few-Layer In ₂ Se ₃ Nanoflakes. Nano Letters, 2015, 15, 8136-8140.	4.5	99
94	Top-Gated Graphene Field-Effect Transistors with High Normalized Transconductance and Designable Dirac Point Voltage. ACS Nano, 2011, 5, 5031-5037.	7.3	96
95	Low Residual Carrier Concentration and High Mobility in 2D Semiconducting Bi ₂ O ₂ Se. Nano Letters, 2019, 19, 197-202.	4.5	95
96	Controlled Growth of Singleâ€Crystal Graphene Films. Advanced Materials, 2020, 32, e1903266.	11.1	95
97	Correlations in space and time and dynamical diffraction of high-energy electrons by crystals. Physical Review B, 1993, 48, 13408-13429.	1.1	94
98	Carbon nanotube arrays based high-performance infrared photodetector [Invited]. Optical Materials Express, 2012, 2, 839.	1.6	93
99	Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nature Communications, 2016, 7, 13440.	5.8	93
100	Lowâ€Temperature Heteroepitaxy of 2D Pbl ₂ /Graphene for Largeâ€Area Flexible Photodetectors. Advanced Materials, 2018, 30, e1803194.	11.1	93
101	Carbon Nanotube Photoelectronic and Photovoltaic Devices and their Applications in Infrared Detection. Small, 2013, 9, 1225-1236.	5.2	92
102	Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nature Communications, 2021, 12, 2391.	5.8	92
103	Nanoscale Electronic Inhomogeneity in In ₂ Se ₃ Nanoribbons Revealed by Microwave Impedance Microscopy. Nano Letters, 2009, 9, 1265-1269.	4.5	91
104	High-Performance Carbon Nanotube Light-Emitting Diodes with Asymmetric Contacts. Nano Letters, 2011, 11, 23-29.	4.5	91
105	Room Temperature Broadband Infrared Carbon Nanotube Photodetector with High Detectivity and Stability. Advanced Optical Materials, 2016, 4, 238-245.	3.6	90
106	High-Performance Carbon Nanotube Complementary Electronics and Integrated Sensor Systems on Ultrathin Plastic Foil. ACS Nano, 2018, 12, 2773-2779.	7.3	90
107	Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene. ACS Nano, 2016, 10, 2922-2929.	7.3	89
108	Measurements and microscopic model of quantum capacitance in graphene. Applied Physics Letters, 2011, 98, .	1.5	88

#	Article	IF	Citations
109	Structure and applications of titanate and related nanostructures. International Journal of Nanotechnology, 2007, 4, 44.	0.1	87
110	Interlayer vibrational modes in few-quintuple-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:m xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:m .<="" 2014,="" 90,="" and.="" b,="" crystals:="" physical="" raman="" review="" spectroscopy="" td=""><td>ın>2ın>2<td>l:mp>l:mn></td></td></mml:m></mml:msub></mml:mrow></mml:m></mml:msub></mml:mrow></mml:math>	ın>2ın>2 <td>l:mp>l:mn></td>	l:mp>l:mn>
111	Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nature Electronics, 2018, 1, 237-245.	13.1	86
112	Revealing the Contribution of Individual Factors to Hydrogen Evolution Reaction Catalytic Activity. Advanced Materials, 2018, 30, e1706076.	11.1	86
113	Grapheneâ€Armored Aluminum Foil with Enhanced Anticorrosion Performance as Current Collectors for Lithiumâ€lon Battery. Advanced Materials, 2017, 29, 1703882.	11.1	85
114	Truly Concomitant and Independently Expressed Short―and Longâ€Term Plasticity in a Bi ₂ O ₂ Seâ€Based Threeâ€Terminal Memristor. Advanced Materials, 2019, 31, e1805769.	11.1	85
115	Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes. Nano Letters, 2016, 16, 7731-7738.	4.5	82
116	Wafer-Scale Growth of Single-Crystal 2D Semiconductor on Perovskite Oxides for High-Performance Transistors. Nano Letters, 2019, 19, 2148-2153.	4.5	82
117	Growth of Semiconducting Single-Walled Carbon Nanotubes by Using Ceria as Catalyst Supports. Nano Letters, 2014, 14, 512-517.	4.5	80
118	Clean Transfer of Large Graphene Single Crystals for Highâ€Intactness Suspended Membranes and Liquid Cells. Advanced Materials, 2017, 29, 1700639.	11.1	80
119	Establishing Ohmic contacts forin situcurrent–voltage characteristic measurements on a carbon nanotube inside the scanning electron microscope. Nanotechnology, 2006, 17, 1087-1098.	1.3	7 9
120	Morphology Control of Layer-Structured Gallium Selenide Nanowires. Nano Letters, 2007, 7, 199-203.	4.5	79
121	Electron Field Emission Characteristics and Field Evaporation of a Single Carbon Nanotube. Journal of Physical Chemistry B, 2005, 109, 110-113.	1.2	78
122	Realization of low contact resistance close to theoretical limit in graphene transistors. Nano Research, 2015, 8, 1669-1679.	5.8	78
123	Tip Cooling Effect and Failure Mechanism of Field-Emitting Carbon Nanotubes. Nano Letters, 2006, 7, 64-68.	4.5	77
124	Ordered Vacancy Compounds and Nanotube Formation in CulnSe ₂ â^'CdS Coreâ^'Shell Nanowires. Nano Letters, 2007, 7, 3734-3738.	4.5	77
125	Carbon nanotube-based flexible electronics. Journal of Materials Chemistry C, 2018, 6, 7714-7727.	2.7	77
126	Nitrogen cluster doping for high-mobility/conductivity graphene films with millimeter-sized domains. Science Advances, 2019, 5, eaaw8337.	4.7	77

#	Article	IF	Citations
127	Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit. ACS Sensors, 2018, 3, 749-756.	4.0	76
128	High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Scientific Reports, 2013, 3, 2670.	1.6	75
129	Carbon Nanotube Feedback-Gate Field-Effect Transistor: Suppressing Current Leakage and Increasing On/Off Ratio. ACS Nano, 2015, 9, 969-977.	7.3	75
130	Batch-fabricated high-performance graphene Hall elements. Scientific Reports, 2013, 3, 1207.	1.6	72
131	The image contrast of surface steps in reflection electron microscopy. Ultramicroscopy, 1985, 16, 59-67.	0.8	71
132	Synthesis and characterization of K2Ti6O13 nanowires. Chemical Physics Letters, 2003, 376, 726-731.	1.2	71
133	Rapid Growth of Large Singleâ€Crystalline Graphene via Second Passivation and Multistage Carbon Supply. Advanced Materials, 2016, 28, 4671-4677.	11.1	69
134	Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Research, 2017, 10, 2732-2742.	5.8	69
135	Growth of High-Density-Aligned and Semiconducting-Enriched Single-Walled Carbon Nanotubes: Decoupling the Conflict between Density and Selectivity. ACS Nano, 2014, 8, 554-562.	7.3	68
136	Controlling Molecular Growth between Fractals and Crystals on Surfaces. ACS Nano, 2015, 9, 11909-11915.	7.3	68
137	Bolometric Effect in Bi ₂ O ₂ Se Photodetectors. Small, 2019, 15, e1904482.	5.2	68
138	High-performance n-type carbon nanotube field-effect transistors with estimated sub-10-ps gate delay. Applied Physics Letters, 2008, 92, 133117.	1.5	67
139	Radiofrequency transistors based on aligned carbon nanotube arrays. Nature Electronics, 2021, 4, 405-415.	13.1	67
140	A Dopingâ€Free Carbon Nanotube CMOS Inverterâ€Based Bipolar Diode and Ambipolar Transistor. Advanced Materials, 2008, 20, 3258-3262.	11.1	66
141	Governing Rule for Dynamic Formation of Grain Boundaries in Grown Graphene. ACS Nano, 2015, 9, 5792-5798.	7.3	66
142	Broadband optical properties of graphene by spectroscopic ellipsometry. Carbon, 2016, 99, 348-353.	5.4	66
143	Synthesis, modification and characterization of K4Nb6O17-type nanotubes. Journal of Materials Chemistry, 2004, 14, 1437.	6.7	65
144	Broadband Bi ₂ O ₂ Se Photodetectors from Infrared to Terahertz. Advanced Functional Materials, 2021, 31, 2009554.	7.8	65

#	Article	IF	CITATIONS
145	Reversible switching on superhydrophobic TiO ₂ nano-strawberry films fabricated at low temperature. Chemical Communications, 2008, , 603-605.	2.2	64
146	Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie - International Edition, 2019, 58, 14446-14451.	7.2	64
147	Interlayer Decoupling in 30° Twisted Bilayer Graphene Quasicrystal. ACS Nano, 2020, 14, 1656-1664.	7.3	64
148	High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits. Nanoscale, 2015, 7, 10954-10962.	2.8	63
149	Self-modulation doping effect in the high-mobility layered semiconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mrow></mml:mrow></mml:msub><mml:mi>Se</mml:mi></mml:mrow><mml:mi>Se</mml:mi></mml:math>	1>2nmil:math	:mŋ> >.
150	Epitaxial dependence of the melting behavior of In nanoparticles embedded in Al matrices. Journal of Materials Research, 1997, 12, 119-123.	1.2	62
151	Switching Vertical to Horizontal Graphene Growth Using Faraday Cageâ€Assisted PECVD Approach for Highâ€Performance Transparent Heating Device. Advanced Materials, 2018, 30, 1704839.	11.1	62
152	Dirac Electrons at the Source: Breaking the 60-mV/Decade Switching Limit. IEEE Transactions on Electron Devices, 2018, 65, 2736-2743.	1.6	62
153	In-situ studies of electron field emission of single carbon nanotubes inside the TEM. Carbon, 2005, 43, 1026-1031.	5.4	61
154	Photoelectric performance of TiO2 nanotube array photoelectrodes cosensitized with CdS/CdSe quantum dots. Applied Physics Letters, 2010, 96, .	1.5	61
155	Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4 V. Applied Physics Letters, 2012, 100, 263116.	1.5	61
156	Comparison of mobility extraction methods based on field-effect measurements for graphene. AIP Advances, 2015, 5, 057136.	0.6	61
157	Monodisperse Copper Chalcogenide Nanocrystals: Controllable Synthesis and the Pinning of Plasmonic Resonance Absorption. Journal of the American Chemical Society, 2015, 137, 12006-12012.	6.6	61
158	Plasmonic hot electron tunneling photodetection in vertical Au–graphene hybrid nanostructures. Laser and Photonics Reviews, 2017, 11, 1600148.	4.4	61
159	Early Lithium Plating Behavior in Confined Nanospace of 3D Lithiophilic Carbon Matrix for Stable Solidâ€State Lithium Metal Batteries. Small, 2019, 15, e1904216.	5.2	61
160	In Situ Fabrication and Graphitization of Amorphous Carbon Nanowires and Their Electrical Properties. Journal of Physical Chemistry B, 2006, 110, 5423-5428.	1.2	60
161	A very low temperature single crystal germanium growth process on insulating substrate using Ni-induced lateral crystallization for three-dimensional integrated circuits. Applied Physics Letters, 2007, 91, 143107.	1.5	60
162	Large-Scale and Rapid Synthesis of Ultralong ZnO Nanowire Films via Anodization. Journal of Physical Chemistry C, 2010, 114, 881-889.	1.5	60

#	Article	IF	Citations
163	Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Research, 2016, 9, 963-973.	5.8	60
164	van Hove Singularity Enhanced Photochemical Reactivity of Twisted Bilayer Graphene. Nano Letters, 2015, 15, 5585-5589.	4.5	59
165	Molecular Beam Epitaxy and Electronic Structure of Atomically Thin Oxyselenide Films. Advanced Materials, 2019, 31, e1901964.	11.1	59
166	Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nature Communications, 2017, 8, 15649.	5.8	57
167	Construction of Sierpiński Triangles up to the Fifth Order. Journal of the American Chemical Society, 2017, 139, 13749-13753.	6.6	57
168	Scalable Preparation of High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. ACS Nano, 2018, 12, 627-634.	7.3	57
169	Optical and Electrical Properties of Ga-Doped ZnO Nanowire Arrays on Conducting Substrates. Journal of Physical Chemistry C, 2009, 113, 8945-8947.	1.5	56
170	High-Quality Ultralong Sb2S3 Nanoribbons on Large Scale. Journal of Physical Chemistry B, 2005, 109, 23312-23315.	1.2	55
171	ZnSe Nanobelts and Nanowires Synthesized by a Closed Space Vapor Transport Technique. Journal of Physical Chemistry C, 2007, 111, 2987-2991.	1.5	55
172	In situ TEM measurements of the mechanical properties and behavior of WS2 nanotubes. Nano Research, 2008, 1, 22.	5.8	55
173	Controlled Growth of Singleâ€Crystal Twelveâ€Pointed Graphene Grains on a Liquid Cu Surface. Advanced Materials, 2014, 26, 6423-6429.	11.1	55
174	Co/carbon-nanotube monometallic system: the effects of oxidation by nitric acid. Physical Chemistry Chemical Physics, 2001, 3, 2518-2521.	1.3	54
175	Nitrogenâ€Doped Singleâ€Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties. Advanced Functional Materials, 2011, 21, 986-992.	7.8	54
176	Catalystâ€Free Synthesis of Fewâ€Layer Graphdiyne Using a Microwaveâ€Induced Temperature Gradient at a Solid/Liquid Interface. Advanced Functional Materials, 2020, 30, 2001396.	7.8	54
177	On the Doyle-Turner representation of the optical potential for RHEED calculations. Surface Science, 1995, 330, 86-100.	0.8	53
178	Shaping Carbon Nanotubes and the Effects on Their Electrical and Mechanical Properties. Advanced Functional Materials, 2006, 16, 1462-1468.	7.8	53
179	Engineering the cap structure of individual carbon nanotubes and corresponding electron field emission characteristics. Applied Physics Letters, 2006, 88, 243108.	1.5	53
180	Scalable fabrication of graphene devices through photolithography. Applied Physics Letters, 2013, 102,	1.5	53

#	Article	IF	CITATIONS
181	Building Large-Domain Twisted Bilayer Graphene with van Hove Singularity. ACS Nano, 2016, 10, 6725-6730.	7.3	53
182	Spin Manipulation by Creation of Single-Molecule Radical Cations. Physical Review Letters, 2016, 116, 027201.	2.9	53
183	Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nature Electronics, 2020, 3, 622-629.	13.1	53
184	Dynamical RHEED from MBE growing surfaces. Surface Science, 1990, 238, L446-L452.	0.8	50
185	Field-Effect Characteristics and Screening in Double-Walled Carbon Nanotube Field-Effect Transistors. Journal of Physical Chemistry B, 2005, 109, 17361-17365.	1.2	50
186	Robust Sierpiński triangle fractals on symmetry-mismatched Ag(100). Chemical Communications, 2016, 52, 10578-10581.	2.2	50
187	Diverse Atomically Sharp Interfaces and Linear Dichroism of 1T' ReS ₂ â€ReSe ₂ Lateral pâ€"n Heterojunctions. Advanced Functional Materials, 2018, 28, 1804696.	7.8	50
188	Electron Scattering Factors of Ions and their Parameterization. Acta Crystallographica Section A: Foundations and Advances, 1998, 54, 481-485.	0.3	49
189	Correlation effects in the ground-state charge density of Mott insulating NiO: A comparison ofab initiocalculations and high-energy electron diffraction measurements. Physical Review B, 2000, 61, 2506-2512.	1.1	49
190	Weak antilocalization and electron–electron interaction in coupled multiple-channel transport in a Bi ₂ Se ₃ thin film. Nanoscale, 2016, 8, 1879-1885.	2.8	49
191	The Very‣ow Shear Modulus of Multiâ€Walled Carbon Nanotubes Determined Simultaneously with the Axial Young's Modulus via in situ Experiments. Advanced Functional Materials, 2008, 18, 1555-1562.	7.8	48
192	Electronic transport in single-walled carbon nanotube/graphene junction. Applied Physics Letters, 2011, 99, .	1.5	48
193	How good can CVD-grown monolayer graphene be?. Nanoscale, 2014, 6, 15255-15261.	2.8	48
194	Tunable graphene micro-emitters with fast temporal response and controllable electron emission. Nature Communications, 2016, 7, 11513.	5.8	48
195	Tensile Loading of Double-Walled and Triple-Walled Carbon Nanotubes and their Mechanical Properties. Journal of Physical Chemistry C, 2009, 113, 17002-17005.	1.5	47
196	Multifunctional Graphene Sensors for Magnetic and Hydrogen Detection. ACS Applied Materials & Interfaces, 2015, 7, 9581-9588.	4.0	47
197	Isotropic Growth of Graphene toward Smoothing Stitching. ACS Nano, 2016, 10, 7189-7196.	7.3	47
198	Copper-Containing Carbon Feedstock for Growing Superclean Graphene. Journal of the American Chemical Society, 2019, 141, 7670-7674.	6.6	47

#	Article	IF	Citations
199	High-Mobility Flexible Oxyselenide Thin-Film Transistors Prepared by a Solution-Assisted Method. Journal of the American Chemical Society, 2020, 142, 2726-2731.	6.6	47
200	A simple method for coating carbon nanotubes with Co–B amorphous alloy. Materials Letters, 2003, 57, 1339-1344.	1.3	46
201	Graphene/Si CMOS Hybrid Hall Integrated Circuits. Scientific Reports, 2014, 4, 5548.	1.6	46
202	Electron–Hole Symmetry Breaking in Charge Transport in Nitrogen-Doped Graphene. ACS Nano, 2017, 11, 4641-4650.	7.3	46
203	Anisotropic Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces. Small, 2018, 14, e1800725.	5.2	46
204	Quantitative Fitting of Nonlinear Current–Voltage Curves and Parameter Retrieval of Semiconducting Nanowire, Nanotube and Nanoribbon Devices. Journal of Nanoscience and Nanotechnology, 2008, 8, 252-258.	0.9	45
205	Photovoltaic Effects in Asymmetrically Contacted CNT Barrier-Free Bipolar Diode. Journal of Physical Chemistry C, 2009, 113, 6891-6893.	1.5	45
206	Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition. Nature Communications, 2013, 4, 2205.	5.8	45
207	Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid. Nano Letters, 2016, 16, 2103-2107.	4.5	45
208	Light-Enhanced Ion Migration in Two-Dimensional Perovskite Single Crystals Revealed in Carbon Nanotubes/Two-Dimensional Perovskite Heterostructure and Its Photomemory Application. ACS Central Science, 2019, 5, 1857-1865.	5.3	45
209	Large Singleâ€Crystal Cu Foils with Highâ€Index Facets by Strainâ€Engineered Anomalous Grain Growth. Advanced Materials, 2020, 32, e2002034.	11.1	45
210	Experimental studies of atomic step contrast in reflection electron microscopy (REM). Ultramicroscopy, 1987, 22, 217-224.	0.8	44
211	A transparent, conducting tape for flexible electronics. Nano Research, 2016, 9, 917-924.	5.8	44
212	Host–Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2021, 143, 10120-10130.	6.6	44
213	Observation of a 2D Electron Gas and the Tuning of the Electrical Conductance of ZnO Nanowires by Controllable Surface Bandâ€Bending. Advanced Functional Materials, 2009, 19, 2380-2387.	7.8	43
214	Ultra-sensitive graphene Hall elements. Applied Physics Letters, 2014, 104, .	1.5	43
215	Sierpiński-triangle fractal crystals with the C3v point group. Chinese Chemical Letters, 2015, 26, 1198-1202.	4.8	43
216	Substrate Doping Effect and Unusually Large Angle van Hove Singularity Evolution in Twisted Bi―and Multilayer Graphene. Advanced Materials, 2017, 29, 1606741.	11.1	43

#	Article	IF	Citations
217	Hot-Carrier Cooling in High-Quality Graphene Is Intrinsically Limited by Optical Phonons. ACS Nano, 2021, 15, 11285-11295.	7.3	43
218	Performing probe experiments in the SEM. Micron, 2004, 35, 495-502.	1.1	42
219	A Roadmap for Controlled Production of Topological Insulator Nanostructures and Thin Films. Small, 2015, 11, 3290-3305.	5.2	42
220	Atomic-Layer-Deposition Growth of an Ultrathin HfO ₂ Film on Graphene. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34050-34056.	4.0	42
221	Beam to String Transition of Vibrating Carbon Nanotubes Under Axial Tension. Advanced Functional Materials, 2009, 19, 1753-1758.	7.8	41
222	Hybrid CdSe/TiO2 nanowire photoelectrodes: Fabrication and photoelectric performance. Journal of Materials Chemistry, 2011, 21, 8749.	6.7	41
223	Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems. ACS Nano, 2019, 13, 2526-2535.	7.3	41
224	New Growth Frontier: Superclean Graphene. ACS Nano, 2020, 14, 10796-10803.	7.3	41
225	Phonon-Assisted Electron Emission from Individual Carbon Nanotubes. Nano Letters, 2011, 11, 734-739.	4.5	40
226	A Grapheneâ€Based Vacuum Transistor with a High ON/OFF Current Ratio. Advanced Functional Materials, 2015, 25, 5972-5978.	7.8	40
227	Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm. Nano Energy, 2015, 17, 104-110.	8.2	40
228	The Way towards Ultrafast Growth of Singleâ€Crystal Graphene on Copper. Advanced Science, 2017, 4, 1700087.	5.6	40
229	Large-area and highly uniform carbon nanotube film for high-performance thin film transistors. Nano Research, 2018, 11, 4356-4367.	5.8	40
230	A Forceâ€Engineered Lint Roller for Superclean Graphene. Advanced Materials, 2019, 31, e1902978.	11.1	40
231	Toward Epitaxial Growth of Misorientation-Free Graphene on Cu(111) Foils. ACS Nano, 2022, 16, 285-294.	7.3	40
232	Preparation of Fe-filled carbon nanotubes by catalytic decomposition of cyclohexane. Synthetic Metals, 2002, 128, 191-195.	2.1	39
233	In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscope. Ultramicroscopy, 2010, 110, 182-189.	0.8	39
234	Unexpected size effect in the thermopower of thin-film stripes. Journal of Applied Physics, 2011, 110, 083709.	1.1	39

#	Article	IF	Citations
235	Flicker noise and magnetic resolution of graphene hall sensors at low frequency. Applied Physics Letters, 2013, 103, .	1.5	39
236	Layerâ€Stacking Growth and Electrical Transport of Hierarchical Graphene Architectures. Advanced Materials, 2014, 26, 3218-3224.	11.1	39
237	Nanoantennaâ€Sandwiched Graphene with Giant Spectral Tuning in the Visibleâ€toâ€Nearâ€Infrared Region. Advanced Optical Materials, 2014, 2, 162-170.	3.6	39
238	Lowâ€Temperature and Rapid Growth of Large Singleâ€Crystalline Graphene with Ethane. Small, 2018, 14, 1702916.	5.2	39
239	2D Bi ₂ O ₂ Se: An Emerging Material Platform for the Next-Generation Electronic Industry. Accounts of Materials Research, 2021, 2, 842-853.	5.9	39
240	Strongly size-dependent electronic properties in C60-encapsulated zigzag nanotubes and lower size limit of carbon nanopeapods. Physical Review B, 2003, 68, .	1.1	38
241	Synthesis and characterization of large scale potassium titanate nanowires with good Li-intercalation performance. Chemical Physics Letters, 2005, 406, 95-100.	1.2	38
242	Strain-induced formation of K2Ti6O13 nanowires via ion exchange. Applied Physics Letters, 2005, 86, 133101.	1.5	38
243	Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. Journal of Electroanalytical Chemistry, 2013, 688, 243-248.	1.9	38
244	lodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal Dichalcogenides. Chemistry of Materials, 2017, 29, 4641-4644.	3.2	38
245	2D Materials: Superlubricity between MoS ₂ Monolayers (Adv. Mater. 27/2017). Advanced Materials, 2017, 29, .	11.1	38
246	Waferâ€Scale Fabrication of Ultrathin Flexible Electronic Systems via Capillaryâ€Assisted Electrochemical Delamination. Advanced Materials, 2018, 30, e1805408.	11.1	38
247	Filling of single-walled carbon nanotubes with silver. Journal of Materials Research, 2000, 15, 2658-2661.	1.2	37
248	Electron side-emission from corrugated CNx nanotubes. Applied Physics Letters, 2004, 85, 4753-4755.	1.5	37
249	Uniform High-k Amorphous Native Oxide Synthesized by Oxygen Plasma for Top-Gated Transistors. Nano Letters, 2020, 20, 7469-7475.	4.5	37
250	Robust ultraclean atomically thin membranes for atomic-resolution electron microscopy. Nature Communications, 2020, 11, 541.	5.8	37
251	Quantitative Analysis of Electron Field-Emission Characteristics of Individual Carbon Nanotubes:Â The Importance of the Tip Structure. Journal of Physical Chemistry B, 2006, 110, 9397-9402.	1.2	36
252	<i>In situ</i> electrical measurements of polytypic silver nanowires. Nanotechnology, 2008, 19, 085711.	1.3	36

#	Article	IF	CITATIONS
253	Visible Light Response of Unintentionally Doped ZnO Nanowire Field Effect Transistors. Journal of Physical Chemistry C, 2009, 113, 16796-16801.	1.5	36
254	Large Signal Operation of Small Band-Gap Carbon Nanotube-Based Ambipolar Transistor: A High-Performance Frequency Doubler. Nano Letters, 2010, 10, 3648-3655.	4.5	36
255	Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface. Nano Research, 2015, 8, 3694-3703.	5.8	36
256	Microcavity-Integrated Carbon Nanotube Photodetectors. ACS Nano, 2016, 10, 6963-6971.	7.3	36
257	Exploitation of Bi ₂ O ₂ Se/graphene van der Waals heterojunction for creating efficient photodetectors and shortâ€channel fieldâ€effect transistors. InformaÄnÄ-Materiály, 2019, 1, 390-395.	8.5	36
258	Geometric analysis of surface resonance conditions in reflection high energy electron diffraction. Journal of Electron Microscopy Technique, 1987, 6, 43-53.	1.1	35
259	Morphosynthesis of Vesicular Mesostructured Calcium Phosphate under Electron Irradiation. Langmuir, 2002, 18, 2450-2452.	1.6	35
260	Energetic, geometric, and electronic evolutions of K-doped single-wall carbon nanotube ropes with K intercalation concentration. Physical Review B, 2004, 69, .	1.1	35
261	Positive electron affinity of fullerenes: Its effect and origin. Journal of Chemical Physics, 2004, 120, 7998-8001.	1.2	35
262	Formation mechanism of overlapping grain boundaries in graphene chemical vapor deposition growth. Chemical Science, 2017, 8, 2209-2214.	3.7	35
263	Low-energy transmission electron diffraction and imaging of large-area graphene. Science Advances, 2017, 3, e1603231.	4.7	35
264	Exploring the Performance Limit of Carbon Nanotube Network Film Fieldâ€Effect Transistors for Digital Integrated Circuit Applications. Advanced Functional Materials, 2019, 29, 1808574.	7.8	35
265	Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles. Applied Physics Letters, 2013, 102, .	1.5	34
266	Tuning Chemical Potential Difference across Alternately Doped Graphene p–n Junctions for High-Efficiency Photodetection. Nano Letters, 2016, 16, 4094-4101.	4.5	34
267	Electrically driven monolithic subwavelength plasmonic interconnect circuits. Science Advances, 2017, 3, e1701456.	4.7	34
268	Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42496-42503.	4.0	34
269	Cutting and sharpening carbon nanotubes using a carbon nanotube â€~nanoknife'. Nanotechnology, 2007, 18, 185503.	1.3	33
270	Nanoparticle and nanorod TiO2 composite photoelectrodes with improved performance. Chemical Communications, 2011, 47, 6608.	2.2	33

#	Article	IF	CITATIONS
271	Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment. Journal of Applied Physics, $2014, 115, .$	1.1	33
272	Exfoliating KTiNbO5 particles into nanosheets. Chemical Physics Letters, 2003, 377, 445-448.	1.2	32
273	Synthesis and Characterizations of Amorphous Carbon Nanotubes by Pyrolysis of Ferrocene Confined within AAM Templates. Journal of Physical Chemistry B, 2006, 110, 8263-8267.	1.2	32
274	Self-Aligned U-Gate Carbon Nanotube Field-Effect Transistor with Extremely Small Parasitic Capacitance and Drain-Induced Barrier Lowering. ACS Nano, 2011, 5, 2512-2519.	7.3	32
275	Contact length scaling in graphene field-effect transistors. Applied Physics Letters, 2012, 100, 103501.	1.5	32
276	Exploration of sensitivity limit for graphene magnetic sensors. Carbon, 2015, 94, 585-589.	5.4	32
277	Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Science Advances, 2016, 2, e1601572.	4.7	32
278	Three-dimensional integration of plasmonics and nanoelectronics. Nature Electronics, 2018, 1, 644-651.	13.1	32
279	Lowering interface state density in carbon nanotube thin film transistors through using stacked Y2O3/HfO2 gate dielectric. Applied Physics Letters, 2018, 113, .	1.5	32
280	Towards Entireâ€Carbonâ€Nanotube Circuits: The Fabrication of Singleâ€Walledâ€Carbonâ€Nanotube Fieldâ€Effect Transistors with Local Multiwalledâ€Carbonâ€Nanotube Interconnects. Advanced Materials, 2009, 21, 1339-1343.	11.1	31
281	Exploiting Twoâ€Dimensional Bi ₂ O ₂ Se for Trace Oxygen Detection. Angewandte Chemie - International Edition, 2020, 59, 17938-17943.	7.2	31
282	Verticalâ€Grapheneâ€Reinforced Titanium Alloy Bipolar Plates in Fuel Cells. Advanced Materials, 2022, 34, e2110565.	11.1	31
283	Anisotropic Thermal Vibrations and Dynamical Electron Diffraction by Crystals. Acta Crystallographica Section A: Foundations and Advances, 1997, 53, 663-672.	0.3	30
284	Scalable Fabrication of Ambipolar Transistors and Radioâ€Frequency Circuits Using Aligned Carbon Nanotube Arrays. Advanced Materials, 2014, 26, 645-652.	11,1	30
285	Visualizing fast growth of large single-crystalline graphene by tunable isotopic carbon source. Nano Research, 2017, 10, 355-363.	5.8	30
286	Silicon-Waveguide-Integrated Carbon Nanotube Optoelectronic System on a Single Chip. ACS Nano, 2020, 14, 7191-7199.	7.3	30
287	Effect of H2on the Electrical Transport Properties of Single Bi2S3Nanowires. Journal of Physical Chemistry B, 2006, 110, 21408-21411.	1.2	29
288	Preparation and characterization of Fe-incorporated titanate nanotubes. Nanotechnology, 2006, 17, 5423-5427.	1.3	29

#	Article	IF	Citations
289	Self-nucleation free and dimension dependent metal-induced lateral crystallization of amorphous germanium for single crystalline germanium growth on insulating substrate. Journal of Applied Physics, 2008, 104, 064501.	1.1	29
290	Transverse dielectric properties of boron nitride nanotubes by $\langle i \rangle$ ab initio $\langle i \rangle$ electric field calculations. Applied Physics Letters, 2009, 94, .	1.5	29
291	Carbon nanotube light sensors with linear dynamic range of over 120 dB. Applied Physics Letters, 2014, 105, .	1.5	29
292	Nonlocal Response in Infrared Detector with Semiconducting Carbon Nanotubes and Graphdiyne. Advanced Science, 2017, 4, 1700472.	5.6	29
293	Ultrafast Broadband Charge Collection from Clean Graphene/CH ₃ NH ₃ Pbl ₃ Interface. Journal of the American Chemical Society, 2018, 140, 14952-14957.	6.6	29
294	Direct Observation of Incommensurate Modulation in Phase-Separated Cu-RichLa2CuO4.003. Physical Review Letters, 1998, 80, 2701-2704.	2.9	28
295	Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements. Applied Physics Letters, 2012, 101, .	1.5	28
296	Modularized Construction of General Integrated Circuits on Individual Carbon Nanotubes. Nano Letters, 2014, 14, 3102-3109.	4.5	28
297	Breakdown of Richardson's Law in Electron Emission from Individual Self-Joule-Heated Carbon Nanotubes. Scientific Reports, 2014, 4, 5102.	1.6	28
298	Toward Highâ€Performance Carbon Nanotube Photovoltaic Devices. Advanced Energy Materials, 2016, 6, 1600522.	10.2	28
299	Chemical vapor deposition of bilayer graphene with layer-resolved growth through dynamic pressure control. Journal of Materials Chemistry C, 2016, 4, 7464-7471.	2.7	28
300	Packing fractal SierpiÅ, ski triangles into one-dimensional crystals via a templating method. Chemical Communications, 2017, 53, 3469-3472.	2.2	28
301	Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films. ACS Applied Materials & Detector Based on Carbon Nanotube Films. ACS Applied Materials & Detector Based on Carbon Nanotube Films. ACS	4.0	28
302	Superclean Growth of Graphene Using a Coldâ€Wall Chemical Vapor Deposition Approach. Angewandte Chemie - International Edition, 2020, 59, 17214-17218.	7.2	28
303	Intrinsic Wettability in Pristine Graphene. Advanced Materials, 2022, 34, e2103620.	11.1	28
304	Metal Atom Catalyzed Enlargement of Fullerenes. Physical Review Letters, 2008, 101, 176102.	2.9	27
305	Fabrication, Transfer, and Transport Properties of Monolayered Freestanding Nanoparticle Sheets. Small, 2011, 7, 583-587.	5.2	27
306	Advances in Highâ€Performance Carbonâ€Nanotube Thinâ€Film Electronics. Advanced Electronic Materials, 2019, 5, 1900122.	2.6	27

#	Article	IF	Citations
307	Defects guided wrinkling in graphene on copper substrate. Carbon, 2019, 143, 736-742.	5.4	27
308	Understanding Interlayer Contact Conductance in Twisted Bilayer Graphene. Small, 2020, 16, e1902844.	5.2	27
309	The observation of surface resonance effects in RHEED patterns. Ultramicroscopy, 1988, 26, 189-194.	0.8	26
310	Vacancy ordering and lithium insertion in III2VI3 nanowires. Nano Research, 2009, 2, 327-335.	5.8	26
311	Growth of covalently bonded Sierpiński triangles up to the second generation. RSC Advances, 2016, 6, 66548-66552.	1.7	26
312	Insight Into Ballisticity of Room-Temperature Carrier Transport in Carbon Nanotube Field-Effect Transistors. IEEE Transactions on Electron Devices, 2019, 66, 3535-3540.	1.6	26
313	Improving the Performance and Uniformity of Carbon-Nanotube-Network-Based Photodiodes via Yttrium Oxide Coating and Decoating. ACS Applied Materials & Interfaces, 2019, 11, 11736-11742.	4.0	26
314	Vertical graphene nanosheetsmodified Al current collectors for high-performance sodium-ion batteries. Nano Research, 2020, 13, 1948-1954.	5.8	26
315	Hydrothermal Reaction Mechanism and Pathway for the Formation of K ₂ Ti ₆ O ₁₃ Nanowires. Advanced Functional Materials, 2008, 18, 3018-3025.	7.8	25
316	Controlling electron-beam-induced carbon deposition on carbon nanotubes by Joule heating. Nanotechnology, 2008, 19, 355304.	1.3	25
317	A doping-free approach to carbon nanotube electronics and optoelectronics. AIP Advances, 2012, 2, .	0.6	25
318	Length Scaling of Carbon Nanotube Electric and Photo Diodes down to Sub-50 nm. Nano Letters, 2014, 14, 5382-5389.	4.5	25
319	Controllable Sliding Transfer of Waferâ€Size Graphene. Advanced Science, 2016, 3, 1600006.	5.6	25
320	Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering. Applied Physics Letters, 2018, 112, .	1.5	25
321	Highâ€Performance and Radiationâ€Hard Carbon Nanotube Complementary Static Randomâ€Access Memory. Advanced Electronic Materials, 2019, 5, 1900313.	2.6	25
322	Enhancementâ€Mode Fieldâ€Effect Transistors and Highâ€Speed Integrated Circuits Based on Aligned Carbon Nanotube Films. Advanced Functional Materials, 2022, 32, 2104539.	7.8	25
323	A general matrix representation of the dynamical theory of electron diffraction. I. General theory. Proceedings of the Royal Society A, 1990, 431, 111-123.	1.0	24
324	A treatment of RHEED from a rough surface of a crystal by an optical potential method. Surface Science, 1992, 279, 380-394.	0.8	24

#	Article	IF	CITATIONS
325	Fieldâ€Emission Characteristics of Individual Carbon Nanotubes with a Conical Tip: The Validity of the Fowler–Nordheim Theory and Maximum Emission Current. Small, 2008, 4, 1907-1912.	5.2	24
326	Grinding a Nanotube. Advanced Materials, 2008, 20, 724-728.	11.1	24
327	Temperature Performance of Dopingâ€Free Topâ€Gate CNT Fieldâ€Effect Transistors: Potential for Low―and Highâ€Temperature Electronics. Advanced Functional Materials, 2011, 21, 1843-1849.	7.8	24
328	Carbon Nanotube Thin Film Transistors for Flat Panel Display Application. Topics in Current Chemistry, 2016, 374, 80.	3.0	24
329	Optical Properties and Photocarrier Dynamics of Bi ₂ O ₂ Se Monolayer and Nanoplates. Advanced Optical Materials, 2020, 8, 1901567.	3.6	24
330	Imaging helical potassium hexaniobate nanotubes. Applied Physics Letters, 2003, 83, 1638-1640.	1.5	23
331	Thermochemical Hole Burning on a Triethylammonium Bis-7,7,8,8-tetracyanoquinodimethane Charge-Transfer Complex Using Single-Walled Carbon Nanotube Scanning Tunneling Microscopy Tips. Journal of Physical Chemistry B, 2005, 109, 3526-3530.	1.2	23
332	Microphotoluminescence study of individual suspended ZnO nanowires. Applied Physics Letters, 2008, 92, 113112.	1.5	23
333	Oriented Bi2Se3 nanoribbons film: Structure, growth, and photoelectric properties. Materials Chemistry and Physics, 2010, 124, 865-869.	2.0	23
334	Doping-free carbon nanotube optoelectronic devices. Science Bulletin, 2012, 57, 149-156.	1.7	23
335	Electron emission from a two-dimensional crystal with atomic thickness. AIP Advances, 2013, 3, .	0.6	23
336	Growth of Uniform Monolayer Graphene Using Iron-Group Metals via the Formation of an Antiperovskite Layer. Chemistry of Materials, 2015, 27, 8230-8236.	3.2	23
337	High Conversion Efficiency Carbon Nanotube-Based Barrier-Free Bipolar-Diode Photodetector. ACS Nano, 2016, 10, 9595-9601.	7.3	23
338	Performance Boosting of Flexible ZnO UV Sensors with Rational Designed Absorbing Antireflection Layer and Humectant Encapsulation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 381-389.	4.0	23
339	Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission. Nano Research, 2018, 11, 300-310.	5.8	23
340	Interlayer Binding Energy of Hexagonal MoS2 as Determined by an In Situ Peeling-to-Fracture Method. Journal of Physical Chemistry C, 2020, 124, 23419-23425.	1.5	23
341	CNTFET Technology for RF Applications: Review and Future Perspective. IEEE Journal of Microwaves, 2021, 1, 275-287.	4.9	23
342	Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29926-29935.	4.0	23

#	Article	IF	CITATIONS
343	Diffraction contrast in reflection electron microscopy—l. Screw dislocation. Micron and Microscopica Acta, 1987, 18, 171-178.	0.2	22
344	A multislice approach to the RHEED and REM calculation. Surface Science, 1988, 199, 609-622.	0.8	22
345	Bloch-wave channeling and HOLZ effects in high-energy electron diffraction. Acta Crystallographica Section A: Foundations and Advances, 1989, 45, 699-703.	0.3	22
346	Accurate measurements of crystal structure factors using a FEG electron microscope. Micron, 1997, 28, 459-467.	1.1	22
347	Controlled Synthesis of Carbon-Encapsulated Co Nanoparticles by CVD. Chemical Vapor Deposition, 2001, 7, 248-251.	1.4	22
348	Theoretical identification of C20 carbon clusters: $\hat{a} \in f$ Prevalence of the monocyclic isomer and existence of the smallest fullerene and bowl isomer. Physical Review B, 2003, 67, .	1.1	22
349	Ultrahigh secondary electron emission of carbon nanotubes. Applied Physics Letters, 2010, 96, .	1.5	22
350	Carbon Nanotube Field-Effect Transistors for Use as Pass Transistors in Integrated Logic Gates and Full Subtractor Circuits. ACS Nano, 2012, 6, 4013-4019.	7.3	22
351	Graphene-based ambipolar electronics for radio frequency applications. Science Bulletin, 2012, 57, 2956-2970.	1.7	22
352	Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties. Frontiers of Physics, 2012, 7, 208-217.	2.4	22
353	Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors. Nanoscale, 2016, 8, 9988-9996.	2.8	22
354	Fe2O3 particles encapsulated inside aligned CNx nanotubes. Applied Physics Letters, 2003, 82, 3319-3321.	1.5	21
355	Fabrication of high performance top-gate complementary inverter using a single carbon nanotube and via a simple process. Applied Physics Letters, 2007, 90, 223116.	1.5	21
356	Patterned Closeâ€Packed Nanoparticle Arrays with Controllable Dimensions and Precise Locations. Small, 2012, 8, 991-996.	5.2	21
357	Carbon Nanotube Self-Gating Diode and Application in Integrated Circuits. ACS Nano, 2016, 10, 6737-6743.	7.3	21
358	A contact study in hole conductor free perovskite solar cells with low temperature processed carbon electrodes. RSC Advances, 2017, 7, 20732-20737.	1.7	21
359	Chemical Intercalation of Topological Insulator Grid Nanostructures for Highâ€Performance Transparent Electrodes. Advanced Materials, 2017, 29, 1703424.	11.1	21
360	Aligning Solutionâ€Derived Carbon Nanotube Film with Full Surface Coverage for Highâ€Performance Electronics Applications. Advanced Materials, 2018, 30, e1707068.	11.1	21

#	Article	IF	CITATIONS
361	Improving subthreshold swing to thermionic emission limit in carbon nanotube network film-based field-effect. Applied Physics Letters, $2018,112,.$	1.5	21
362	Suppression of leakage current in carbon nanotube field-effect transistors. Nano Research, 2021, 14, 976-981.	5.8	21
363	Direct retrieval of crystal structure factors in THEED. Ultramicroscopy, 1995, 57, 1-9.	0.8	20
364	Synthesis and characterization of crystalline microporous cobalt phosphite nanowires. Applied Physics Letters, 2005, 87, 173122.	1.5	20
365	Structure of nanosized materials by high-energy X-ray diffraction: study of titanate nanotubes. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, .	0.4	20
366	A simple route to controllable growth of ZnOnanorod arrays on conducting substrates. CrystEngComm, 2010, 12, 940-946.	1.3	20
367	Controllability of the Coulomb charging energy in close-packed nanoparticle arrays. Nanoscale, 2013, 5, 10258.	2.8	20
368	Wafer scale fabrication of carbon nanotube thin film transistors with high yield. Journal of Applied Physics, 2016, 120, .	1.1	20
369	Solid state carbon nanotube device for controllable trion electroluminescence emission. Nanoscale, 2016, 8, 6761-6769.	2.8	20
370	Epitaxial Growth of Ternary Topological Insulator Bi ₂ Te ₂ Se 2D Crystals on Mica. Small, 2017, 13, 1603572.	5.2	20
371	Carbon nanotube radio-frequency electronics. Nanotechnology, 2017, 28, 212001.	1.3	20
372	Speeding up carbon nanotube integrated circuits through three-dimensional architecture. Nano Research, 2019, 12, 1810-1816.	5.8	20
373	Electron scattering factors of ions and dynamical RHEED from surfaces of ionic crystals. Physical Review B, 1998, 57, 7259-7265.	1.1	19
374	Structure and growth of monoclinic Mo2S3 nanorods. Applied Physics Letters, 2003, 83, 3561-3563.	1.5	19
375	Porous crystalline iron oxide thin films templated by mesoporous silica. Microporous and Mesoporous Materials, 2005, 83, 219-224.	2.2	19
376	In situgrowth and characterization of Ag and Cu nanowires. Nanotechnology, 2006, 17, S376-S380.	1.3	19
377	The Field-Emission and Currentâ^'Voltage Characteristics of Individual W ₅ O ₁₄ Nanowires. Journal of Physical Chemistry C, 2008, 112, 5250-5253.	1.5	19
378	Reliability tests and improvements for Sc-contacted n-type carbon nanotube transistors. Nano Research, 2013, 6, 535-545.	5.8	19

#	Article	IF	Citations
379	Novel graphene–oxide–semiconductor nanowire phototransistors. Journal of Materials Chemistry C, 2014, 2, 1592.	2.7	19
380	Flexible Light-Emitting Devices Based on Chirality-Sorted Semiconducting Carbon Nanotube Films. ACS Applied Materials & Devices Based on Chirality-Sorted Semiconducting Carbon Nanotube Films. ACS Applied Materials & Devices Based on Chirality-Sorted Semiconducting Carbon Nanotube Films. ACS Applied Materials & Devices Based on Chirality-Sorted Semiconducting Carbon Nanotube Films. ACS Applied Materials & Devices Based on Chirality-Sorted Semiconducting Carbon Nanotube Films. ACS Applied Materials & Devices Based on Chirality-Sorted Semiconducting Carbon Nanotube Films. ACS Applied Materials & Devices Based on Chirality-Sorted Semiconducting Carbon Nanotube Films. ACS Applied Materials & Devices Based on Chirality-Sorted Semiconducting Carbon Nanotube Films. ACS Applied Materials & Devices Based on Chirality-Sorted Semiconducting Carbon Nanotube Films.	4.0	19
381	Ultrasensitive triboelectric nanogenerator for weak ambient energy with rational unipolar stacking structure and low-loss power management. Nano Energy, 2017, 41, 351-358.	8.2	19
382	Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Research, 2018, 11, 3154-3163.	5.8	19
383	Growth of Ultraflat Graphene with Greatly Enhanced Mechanical Properties. Nano Letters, 2020, 20, 6798-6806.	4.5	19
384	Twin physically unclonable functions based on aligned carbon nanotube arrays. Nature Electronics, 2022, 5, 424-432.	13.1	19
385	Diffraction contrast in reflection electron microscopyâ€"II. Surface steps and dislocations under the surface. Micron and Microscopica Acta, 1987, 18, 179-186.	0.2	18
386	The effect of the surface on thermal diffuse intensities in reflection high energy electron diffraction. Proceedings of the Royal Society A, 1993, 440, 567-588.	1.0	18
387	Interplay of single-wall carbon nanotubes and encapsulatedLa@C82,La2@C80, andSc3N@C80. Physical Review B, 2005, 71, .	1.1	18
388	Exploration of yttria films as gate dielectrics in sub-50 nm carbon nanotube field-effect transistors. Nanoscale, 2014, 6, 11316-11321.	2.8	18
389	Dimensionality-dependent charge transport in close-packed nanoparticle arrays: from 2D to 3D. Scientific Reports, 2015, 4, 7565.	1.6	18
390	Edgeâ€Statesâ€Induced Disruption to the Energy Band Alignment at Thicknessâ€Modulated Molybdenum Sulfide Junctions. Advanced Electronic Materials, 2016, 2, 1600048.	2.6	18
391	Scaling down contact length in complementary carbon nanotube field-effect transistors. Nanoscale, 2017, 9, 9615-9621.	2.8	18
392	Flexible Integrated Circuits Based on Carbon Nanotubes. Accounts of Materials Research, 2020, 1, 88-99.	5.9	18
393	Quantitative Analyses of the Interfacial Properties of Current Collectors at the Mesoscopic Level in Lithium Ion Batteries by Using Hierarchical Graphene. Nano Letters, 2020, 20, 2175-2182.	4.5	18
394	Experimental studies of surface resonance scattering processes in rheed. Surface Science, 1988, 201, 559-572.	0.8	17
395	Dynamical effects of thermal diffuse scattering in RHEED. Acta Crystallographica Section A: Foundations and Advances, 1991, 47, 170-176.	0.3	17
396	Lattice dynamics and Debye–Waller factors of some compounds with the sodium chloride structure. Acta Crystallographica Section A: Foundations and Advances, 1999, 55, 1014-1025.	0.3	17

#	Article	IF	CITATIONS
397	Analytical analysis of heat conduction in a suspended one-dimensional object. Applied Physics Letters, 2009, 95, 143109.	1.5	17
398	<i>In situ</i> comprehensive characterization of optoelectronic nanomaterials for device purposes. Nanotechnology, 2009, 20, 175703.	1.3	17
399	Performance projections for ballistic carbon nanotube FinFET at circuit level. Nano Research, 2016, 9, 1785-1794.	5.8	17
400	Performance enhancement of carbon nanotube thin film transistor by yttrium oxide capping. Nanoscale, 2018, 10, 4202-4208.	2.8	17
401	Strengthened Complementary Metal–Oxide–Semiconductor Logic for Small-Band-Gap Semiconductor-Based High-Performance and Low-Power Application. ACS Nano, 2020, 14, 15267-15275.	7.3	17
402	Strain-Free Layered Semiconductors for 2D Transistors with On-State Current Density Exceeding 1.3 mA μm ^{–1} . Nano Letters, 2022, 22, 3770-3776.	4.5	17
403	Studies on the etching and annealing behaviour of $\hat{l}\pm\hat{a}$ Al2O3(1012) surfaces by reflection electron microscopy. Surface Science, 1991, 243, 210-218.	0.8	16
404	Controlled synthesis and phase transformation of ferrous nanowires inside carbon nanotubes. Chemical Physics Letters, 2003, 375, 59-64.	1.2	16
405	Simultaneous Electrical and Thermoelectric Parameter Retrieval via Two Terminal Current–Voltage Measurements on Individual ZnO Nanowires. Advanced Functional Materials, 2011, 21, 3900-3906.	7.8	16
406	Thermal transport along Bi2Te3 topological insulator nanowires. Applied Physics Letters, 2014, 105, .	1.5	16
407	Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes. Nanoscale, 2015, 7, 6805-6812.	2.8	16
408	Chemically Engineered Substrates for Patternable Growth of Two-Dimensional Chalcogenide Crystals. ACS Nano, 2016, 10, 10317-10323.	7.3	16
409	Growth of 12-inch uniform monolayer graphene film on molten glass and its application in PbI2-based photodetector. Nano Research, 2019, 12, 1888-1893.	5.8	16
410	nâ€Type Diracâ€Source Fieldâ€Effect Transistors Based on a Graphene/Carbon Nanotube Heterojunction. Advanced Electronic Materials, 2020, 6, 2000258.	2.6	16
411	Charge trap-based carbon nanotube transistor for synaptic function mimicking. Nano Research, 2021, 14, 4258-4263.	5.8	16
412	Errors arising from numerical use of the Mott formula in electron image simulation. Acta Crystallographica Section A: Foundations and Advances, 1988, 44, 1-6.	0.3	15
413	Dynamical calculations for RHEED from MBE growing surfaces. I. Growth on a low-index surface. Proceedings of the Royal Society A, 1991, 432, 195-213.	1.0	15
414	Hexaniobate nanotubes with variable interlayer spacings. Chemical Physics Letters, 2004, 400, 536-540.	1.2	15

#	Article	IF	CITATIONS
415	Switching electron current in a semiconductor nanowire via controlling the carrier injection from the electrode. Applied Physics Letters, 2006, 89, 213108.	1.5	15
416	Silicon Oxide Electronâ€Emitting Nanodiodes. Advanced Electronic Materials, 2018, 4, 1800136.	2.6	15
417	Quality metrology of carbon nanotube thin films and its application for carbon nanotube-based electronics. Nano Research, 2020, 13, 1749-1755.	5.8	15
418	Deepâ€Submicrometer Complementary Metalâ€Oxideâ€Semiconductor Transistors Based on Carbon Nanotube Films. Advanced Electronic Materials, 2022, 8, 2100751.	2.6	15
419	High-resolution transmission electron microscopy investigations of a highly adhesive hydroxyapatite coating/titanium interface fabricated by ion-beam-assisted deposition. Journal of Biomedical Materials Research Part B, 2000, 52, 115-118.	3.0	14
420	High-performance doping-free carbon-nanotube-based CMOS devices and integrated circuits. Science Bulletin, 2012, 57, 135-148.	1.7	14
421	Floating Growth of Large-Scale Freestanding TiO ₂ Nanorod Films at the Gas–Liquid Interface for Additive-Free Li-lon Battery Applications. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17376-17383.	4.0	14
422	Vacuum synthesis of magnetic aluminum phthalocyanine on Au(111). Chemical Communications, 2016, 52, 10338-10341.	2.2	14
423	Microcavity-Controlled Chirality-Sorted Carbon Nanotube Film Infrared Light Emitters. ACS Photonics, 2017, 4, 435-442.	3.2	14
424	Analyzing Gamma-Ray Irradiation Effects on Carbon Nanotube Top-Gated Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 47756-47763.	4.0	14
425	Temperature dependence of quantum oscillations from non-parabolic dispersions. Nature Communications, 2021, 12, 6213.	5.8	14
426	Reflection electron imaging of free surfaces and surface/dislocation interactions. Ultramicroscopy, 1989, 29, 135-146.	0.8	13
427	Dynamical calculations for RHEED from MBE growing surfaces. II. Growth interruption and surface recovery. Proceedings of the Royal Society A, 1991, 435, 257-267.	1.0	13
428	Quasi-dynamical electron diffraction – a kinematic type of expression for the dynamical diffracted-beam amplitudes. Acta Crystallographica Section A: Foundations and Advances, 2000, 56, 511-518.	0.3	13
429	Angular dependent luminescence of individual suspended ZnO nanorods. Applied Physics Letters, 2008, 93, 023117.	1.5	13
430	Microphotoluminescence study of exciton polaritons guided in ZnO nanorods. Applied Physics Letters, 2009, 95, 173109.	1.5	13
431	Electroluminescence from Serpentine Carbon Nanotube Based Lightâ€Emitting Diodes on Quartz. Small, 2014, 10, 1050-1056.	5.2	13
432	First Principles Simulation of Energy efficient Switching by Source Density of States Engineering. , 2018, , .		13

#	Article	IF	Citations
433	Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage. Nano Research, 2020, 13, 1875-1881.	5.8	13
434	Unveiling the Fine Structural Distortion of Atomically Thin Bi ₂ O ₂ Se by Thirdâ∈Harmonic Generation. Advanced Materials, 2020, 32, e2002831.	11.1	13
435	Highly Temperatureâ€Stable Carbon Nanotube Transistors and Gigahertz Integrated Circuits for Cryogenic Electronics. Advanced Electronic Materials, 2021, 7, 2100202.	2.6	13
436	Electron atomic scattering factors, Debye–Waller factors and the optical potential for high-energy electron diffraction. Microscopy (Oxford, England), 2005, 54, 199-207.	0.7	12
437	Model GW study of the late transition metal monoxides. Journal of Chemical Physics, 2012, 137, 154110.	1.2	12
438	Doping-free fabrication of carbon nanotube thin-film diodes and their photovoltaic characteristics. Nano Research, 2012, 5, 33-42.	5.8	12
439	Dielectric constant of NiO and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtext>LDA </mml:mtext> <mml:mo> + </mml:mo> <mml:mi>U </mml:mi> <td>ml::mrow></td><td></td></mml:mrow></mml:math>	ml: :mr ow>	
440	Carbon nanotube thin film transistors fabricated by an etching based manufacturing compatible process. Nanoscale, 2017, 9, 4388-4396.	2.8	12
441	Solution-processed carbon nanotubes based transistors with current density of 1.7 mA/νm and peak transconductance of 0.8 mS/μm. , 2017, , .		12
442	Surface resonance effects and beam convergence in REM. Ultramicroscopy, 1988, 26, 161-167.	0.8	11
443	Morphogenesis of surface patterns and incorporation of redox-active metals in mesoporous silicate molecular sieves. Surface and Interface Analysis, 2001, 32, 193-197.	0.8	11
444	Carrier sheet density constrained anomalous current saturation of graphene field effect transistors: kinks and negative differential resistances. Nanoscale, 2013, 5, 2811.	2.8	11
445	Carbon Nanotube Based Multifunctional Ambipolar Transistors for AC Applications. Advanced Functional Materials, 2013, 23, 446-450.	7.8	11
446	Carbon nanotubes for high-performance logic. MRS Bulletin, 2014, 39, 719-726.	1.7	11
447	Transparent conducting oxide free backside illuminated perovskite solar cells. Applied Physics Letters, 2015, 107, .	1.5	11
448	Contact-dominated transport in carbon nanotube thin films: toward large-scale fabrication of high performance photovoltaic devices. Nanoscale, 2016, 8, 17122-17130.	2.8	11
449	Asymmetry allows photocurrent in intrinsic graphene. Nature Nanotechnology, 2019, 14, 105-106.	15.6	11
450	Dirac-cone induced gating enhancement in single-molecule field-effect transistors. Nanoscale, 2019, 11, 13117-13125.	2.8	11

#	Article	IF	CITATIONS
451	High-yield and low-cost separation of high-purity semiconducting single-walled carbon nanotubes with closed-loop recycling of raw materials and solvents. Nano Research, 2021, 14, 4281-4287.	5.8	11
452	Evidence for the damping of coherence in inelastic scattering of high-energy electrons by crystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 175, 461-464.	0.9	10
453	Charge modulations inLa2CuO4-based cuprates. Physical Review B, 2000, 62, 189-195.	1.1	10
454	Thermochemical Hole Burning on DPA(TCNQ)2 and MEM(TCNQ)2 Charge Transfer Complexes Using a Scanning Tunneling Microscope. Journal of Physical Chemistry B, 2004, 108, 14800-14803.	1.2	10
455	Quantitative Study on the Effect of Surface Treatments on the Electric Characteristics of ZnO Nanowires. Journal of Physical Chemistry C, 2008, 112, 14225-14228.	1.5	10
456	Phase transformations in one-dimensional materials: applications in electronics and energy sciences. Journal of Materials Chemistry, 2009, 19, 5879.	6.7	10
457	Electric-field-direction dependent spatial distribution of electron emission along electrically biased carbon nanotubes. Physical Review B, 2011, 84, .	1.1	10
458	High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide. Applied Physics Letters, 2014, 105, 063101.	1.5	10
459	Penetrative imaging of sub-surface microstructures with a near-field microwave microscope. Journal of Applied Physics, 2014, 116, .	1.1	10
460	Transient response of carbon nanotube integrated circuits. Nano Research, 2015, 8, 1005-1016.	5.8	10
461	Sensitivity enhancement of graphene Hall sensors modified by single-molecule magnets at room temperature. RSC Advances, 2017, 7, 1776-1781.	1.7	10
462	Asymmetric Light Excitation for Photodetectors Based on Nanoscale Semiconductors. ACS Nano, 2017, 11, 549-557.	7.3	10
463	A new stage for flexible nanotube devices. Nature Electronics, 2018, 1, 158-159.	13.1	10
464	A Singleâ€Electron Transistor Made of a 3D Topological Insulator Nanoplate. Advanced Materials, 2019, 31, e1903686.	11.1	10
465	Comparative study of the extraction selectivity of PFO-BPy and PCz for small to large diameter single-walled carbon nanotubes. Nano Research, 2022, 15, 8479-8485.	5.8	10
466	A note on the general bloch wave theory and boundary problems in RHEED and REM. Surface Science, 1989, 222, 296-312.	0.8	9
467	On the validity of the direct phasing and Fourier method in electron crystallography. Acta Crystallographica Section A: Foundations and Advances, 1994, 50, 759-771.	0.3	9
468	Automated identification of symmetry in CBED patterns: a genetic approach. Ultramicroscopy, 2000, 84, 47-56.	0.8	9

#	Article	IF	CITATIONS
469	The small terrace size approximation in the theory of RHEED oscillations. Journal of Crystal Growth, 2002, 235, 79-88.	0.7	9
470	Scanning tunneling microscope-based thermochemical hole burning on a series of charge transfer complexes. Applied Physics Letters, 2005, 86, 133105.	1.5	9
471	A Comparative Study on SWCNT and DWCNT Field-Effect Transistors. Journal of Nanoscience and Nanotechnology, 2007, 7, 1568-1572.	0.9	9
472	High-field electrical transport and breakdown behavior of double-walled carbon nanotube field-effect transistors. Carbon, 2007, 45, 760-765.	5.4	9
473	Channel-Length-Dependent Transport and Photovoltaic Characteristics of Carbon-Nanotube-Based, Barrier-Free Bipolar Diode. ACS Applied Materials & Interfaces, 2012, 4, 1154-1157.	4.0	9
474	On-chip polarized light emitters based on (6,5) chirality-sorted carbon nanotube aligned arrays. Applied Physics Letters, 2016, 108, .	1.5	9
475	Plasmonâ€Induced Enhancement of Infrared Detection Using a Carbon Nanotube Diode. Advanced Optical Materials, 2017, 5, 1600865.	3.6	9
476	Rapid growth of angle-confined large-domain graphene bicrystals. Nano Research, 2017, 10, 1189-1199.	5.8	9
477	Scaling carbon nanotube CMOS FETs towards quantum limit. , 2017, , .		9
478	Ultrasensitive Magnetic Sensors Enabled by Heterogeneous Integration of Graphene Hall Elements and Silicon Processing Circuits. ACS Nano, 2020, 14, 17606-17614.	7.3	9
479	Carbon Nanotube Based Radio Frequency Transistors for K-Band Amplifiers. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 37475-37482.	4.0	9
480	Physics and applications of nanotubes. Journal of Applied Physics, 2022, 131, .	1.1	9
481	Diffuse diffraction spots in RHEED patterns. Ultramicroscopy, 1988, 26, 227-232.	0.8	8
482	On the uncoupling of surface superlattice reflections in TED analysis of reconstructed surfaces. Acta Crystallographica Section A: Foundations and Advances, 1991, 47, 101-109.	0.3	8
483	Matrix description of dynamical HOLZ diffraction tested on the strained layer superlattice Si/GeSi. Ultramicroscopy, 1992, 45, 405-409.	0.8	8
484	Ionicity of nickel oxide: Direct determination by reflection diffraction of high-energy electrons from the (100) surface. Physical Review B, 1997, 56, 15314-15319.	1.1	8
485	Fabrication and electric measurements of nanostructures inside transmission electron microscope. Ultramicroscopy, 2011, 111, 948-954.	0.8	8
486	Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions. Applied Physics Letters, 2014, 105, 213501.	1.5	8

#	Article	IF	CITATIONS
487	2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes. Advanced Materials, 2015, 27, 4315-4321.	11.1	8
488	Kinetically controlled hierarchical self-assemblies of all-trans-retinoic acid on Au(111). Chemical Communications, 2017, 53, 2252-2255.	2.2	8
489	Interlayer electrical resistivity of rotated graphene layers studied by in-situ scanning electron microscopy. Ultramicroscopy, 2018, 193, 90-96.	0.8	8
490	Charge Transfer Properties of Heterostructures Formed by Bi 2 O 2 Se and Transition Metal Dichalcogenide Monolayers. Small, 2021, , 2106078.	5.2	8
491	One-dimensional perovskite-based Li-ion battery anodes with high capacity and cycling stability. Journal of Energy Chemistry, 2022, 72, 73-80.	7.1	8
492	EELS analysis of surface-channelled electrons. Surface Science, 1988, 204, 555-567.	0.8	7
493	Thermal diffuse scattering and REM image-contrast preservation. Ultramicroscopy, 1989, 29, 168-174.	0.8	7
494	On the damping of coherence in the small-angle inelastic scattering of high-energy electrons by crystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 170, 111-115.	0.9	7
495	Tensor theories of high energy electron diffraction and their use in surface crystallography. Surface Science, 1993, 298, 316-330.	0.8	7
496	Accurate measurement of phase shift in electron holography. Applied Physics Letters, 1998, 72, 771-773.	1.5	7
497	Modulation structure and phase transformation in a Cu-rich La-Cu-O oxide. Physical Review B, 1999, 59, 3489-3493.	1.1	7
498	Defects and domain structures in SBA-16 mesoporous films with 3D cubic structure. Chemical Physics Letters, 2005, 411, 463-467.	1.2	7
499	Thermionic electron emission from single carbon nanostructures and its applications in vacuum nanoelectronics. MRS Bulletin, 2017, 42, 493-499.	1.7	7
500	Contact Resistance Effects in Carbon Nanotube Thin Film Transistors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 1029-1035.	2.2	7
501	Hydrophilic, Clean Graphene for Cell Culture and Cryo-EM Imaging. Nano Letters, 2021, 21, 9587-9593.	4.5	7
502	Slipâ€Lineâ€Guided Growth of Graphene. Advanced Materials, 2022, 34, e2201188.	11.1	7
503	Reflection electron microscopy methods for the study of surface structure. Journal of Microscopy, 1987, 146, 17-27.	0.8	6
504	Effects of the coherence of illumination on electron microdiffraction pattern intensities. Journal of Electron Microscopy Technique, 1987, 7, 177-183.	1.1	6

#	Article	IF	CITATIONS
505	Reflection electron microscopy observations of dislocations and dislocation motion in zinc oxide. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 64, 533-541.	0.8	6
506	Direct determination of crystal and surface structures in THEED. Ultramicroscopy, 1993, 52, 312-317.	0.8	6
507	New Developments of Electron Diffraction Theory. Advances in Imaging and Electron Physics, 1994, 90, 205-351.	0.1	6
508	Calculations of adsorption of O2and H2O on a carbon nanotube tip in field-emission conditions. Journal Physics D: Applied Physics, 2003, 36, 3034-3038.	1.3	6
509	REW– exit-wave reconstruction and alignments for focus-variation high-resolution transmission electron microscopy images. Journal of Applied Crystallography, 2007, 40, 614-614.	1.9	6
510	High-performance lithium battery anodes using silicon nanowires. , 2010, , 187-191.		6
511	Transmission electron microscope observation of a freestanding nanocrystal in a Coulomb potential well. Nanoscale, 2010, 2, 248-253.	2.8	6
512	Self-Assembly of Large-Scale Floating TiO2Nanorod Arrays at the Gas–Liquid Interface. ACS Applied Materials & Company: Interfaces, 2013, 5, 8850-8852.	4.0	6
513	Exploration of vertical scaling limit in carbon nanotube transistors. Applied Physics Letters, 2016, 108,	1.5	6
514	Wearable Technology: Machine-Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns (Adv. Mater. 46/2016). Advanced Materials, 2016, 28, 10266-10266.	11.1	6
515	Nanoscale color sensors made on semiconducting multi-wall carbon nanotubes. Nano Research, 2016, 9, 1470-1479.	5.8	6
516	Macroscale single crystal graphene templated directional alignment of liquid-crystal microlens array for light field imaging. Applied Physics Letters, $2019,115,.$	1.5	6
517	Transconductance Amplification in Diracâ€Source Fieldâ€Effect Transistors Enabled by Graphene/Nanotube Hereojunctions. Advanced Electronic Materials, 2020, 6, 1901289.	2.6	6
518	Wafer-scale fabrication of carbon-nanotube-based CMOS transistors and circuits with high thermal stability. Nano Research, 2022, 15, 9875-9880.	5.8	6
519	Toward batch synthesis of high-quality graphene by cold-wall chemical vapor deposition approach. Nano Research, 2022, 15, 9683-9688.	5.8	6
520	Light-Controlled Reconfigurable Optical Synapse Based on Carbon Nanotubes/2D Perovskite Heterostructure for Image Recognition. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28221-28229.	4.0	6
521	An isolating algorithm for automated surface structure determination using RHEED. Surface Science, 1992, 268, L325-L329.	0.8	5
522	Many-beam simulations and observations of large-angle convergent-beam electron diffraction imaging of crystal defects. Philosophical Magazine Letters, 1992, 66, 225-233.	0.5	5

#	Article	IF	Citations
523	Theory of bulk resonance diffraction in THEED. Proceedings of the Royal Society A, 1993, 440, 95-115.	1.0	5
524	Effects of bulk resonance diffraction on inelastic scattering of high-energy electrons by crystals. Proceedings of the Royal Society A, 1993, 440, 117-133.	1.0	5
525	Dynamical RHEED Calculations from the Surface of a Semi-Infinite Crystal. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, 471-475.	0.3	5
526	Synthesis of Microporous Silica in the Presence of Dodecyldimethylbenzylammonium Chloride Surfactant. Chemistry Letters, 2000, 29, 1150-1151.	0.7	5
527	Surface structural sensitivity of convergent-beam RHEED: Si (001) $2\tilde{A}-1$ models compared with dynamical simulations. Ultramicroscopy, 2000, 81, 235-244.	0.8	5
528	Superconducting phases, charge ordering and possible correlation between them in La2CuO4.12. Superconductor Science and Technology, 2001, 14, 398-405.	1.8	5
529	Field emission patterns with atomic resolution of single-walled carbon nanotubes by field emission microscopy. Science in China Series G: Physics, Mechanics and Astronomy, 2003, 46, 33.	0.2	5
530	Controlled cleavage of single semiconducting nanowires and study on the suitability of their use as nanocavities for nanolasers. Applied Physics Letters, 2004, 84, 4920-4922.	1.5	5
531	display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.2	5
532	The wrap-around problem and optimal padding in the exit wave reconstruction using HRTEM images. Journal of Electron Microscopy, 2006, 55, 191-200.	0.9	5
533	Quantitative analysis of defects and domain boundaries in mesoporous SBA-16 films. Micron, 2007, 38, 362-370.	1.1	5
534	Electron Energy Loss Spectroscopy Study on the Dielectric Response of Single H2Ti3O7 Nanotube. Microscopy and Microanalysis, 2009, 15, 1218-1219.	0.2	5
535	A Waveguideâ€Like Effect Observed in Multiwalled Carbon Nanotube Bundles. Advanced Functional Materials, 2010, 20, 2263-2268.	7.8	5
536	Pointwise Plucking of Suspended Carbon Nanotubes. Nano Letters, 2012, 12, 3663-3667.	4.5	5
537	Large-scale floated single-crystalline TiO2 flower-like films: synthesis details and applications. RSC Advances, 2013, 3, 17668.	1.7	5
538	Electrical and Photoresponse Properties of Inversion Asymmetric Topological Insulator BiTeCl Nanoplates. ChemNanoMat, 2017, 3, 406-410.	1,5	5
539	Performance improvement induced by asymmetric Y2O3-coated device structure to carbon-nanotube-film based photodetectors. Applied Physics Letters, 2017, 111, .	1.5	5
540	Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie, 2019, 131, 14588-14593.	1.6	5

#	Article	IF	CITATIONS
541	Monochromatic Carbon Nanotube Tangles Grown by Microfluidic Switching between Chaos and Fractals. ACS Nano, 2021, 15, 5129-5137.	7.3	5
542	Atomically Thin Bilayer Janus Membranes for Cryo-electron Microscopy. ACS Nano, 2021, 15, 16562-16571.	7.3	5
543	Intrinsic Wettability in Pristine Graphene (Adv. Mater. 6/2022). Advanced Materials, 2022, 34, .	11.1	5
544	Illumination of crystal surfaces in the electron microscope under RHEED and REM geometry. Ultramicroscopy, 1990, 32, 169-175.	0.8	4
545	A general matrix representation of the dynamical theory of electron diffraction. II. Application to rheed from relaxed and reconstructed surfaces. Proceedings of the Royal Society A, 1990, 431, 125-142.	1.0	4
546	Dynamical calculations for RHEED from MBE growing surfaces. III. Heteroepitaxial growth and interface formation. Proceedings of the Royal Society A, 1991, 435, 269-286.	1.0	4
547	Bethe potentials in dynamical RHEED calculations. Surface Science, 1996, 351, L245-L252.	0.8	4
548	Approximate Methods in Dynamical RHEED Calculations. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, 909-922.	0.3	4
549	Direct retrieval of crystal and surface structures using high energy electrons. Micron, 1997, 28, 159-173.	1.1	4
550	Debye–Waller factors of compounds with the caesium chloride structure. Acta Crystallographica Section A: Foundations and Advances, 2000, 56, 519-524.	0.3	4
551	Energetics of high temperature dimer desorption and reconstruction at the end of small zigzag carbon nanotubes. Chemical Physics Letters, 2003, 368, 20-26.	1.2	4
552	On the phenomenological nature of the work function as determined from electron field–emission experiments on nanotubes and nanowires. Surface and Interface Analysis, 2006, 38, 1073-1077.	0.8	4
553	Response to "Comment on â€~Unexpected size effect in the thermopower of thin-film stripes'―[J. Appl. Phys. 115, 236101 (2014)]. Journal of Applied Physics, 2014, 115, 236102.	1.1	4
554	Flexible graphene hall sensors with high sensitivity. , 2015, , .		4
555	Flexible Photodetectors: Lowâ€Temperature Heteroepitaxy of 2D Pbl ₂ /Graphene for Largeâ€Area Flexible Photodetectors (Adv. Mater. 36/2018). Advanced Materials, 2018, 30, 1870271.	11.1	4
556	Controlling the Growth of Single Nanowires in a Nanowire Forest for near-Infrared Photodetection. ACS Applied Nano Materials, 2018, 1, 3035-3041.	2.4	4
557	Carbon nanotube-based photovoltaic receiver with open-circuit voltage larger than 10â€℃. Nano Energy, 2019, 57, 241-247.	8.2	4
558	Superclean Growth of Graphene Using a Coldâ€Wall Chemical Vapor Deposition Approach. Angewandte Chemie, 2020, 132, 17367-17371.	1.6	4

#	Article	IF	CITATIONS
559	Utilization of Synergistic Effect of Dimensionâ€Differentiated Hierarchical Nanomaterials for Transparent and Flexible Wireless Communicational Elements. Advanced Materials Technologies, 2020, 5, 1901057.	3.0	4
560	The effect of localized strain on the electrical characteristics of curved carbon nanotubes. Journal of Applied Physics, 2021, 129, 025107.	1.1	4
561	Title is missing!. European Physical Journal B, 2002, 25, 19-23.	0.6	4
562	Graphene Membranes for Multiâ€Dimensional Electron Microscopy Imaging: Preparation, Application, and Prospect. Advanced Functional Materials, 2022, 32, .	7.8	4
563	Surface superlattice reflections and kinematical approximation in RHEED. Acta Crystallographica Section A: Foundations and Advances, 1991, 47, 95-101.	0.3	3
564	Bloch wave origin of surface resonance scattering in RHEED. Surface Science, 1994, 316, L1049-L1054.	0.8	3
565	Anisotropic dispersion of the band structure and formation of ring patterns in CBED. Acta Crystallographica Section A: Foundations and Advances, 1999, 55, 1026-1033.	0.3	3
566	Incommensurate valence modulation in high- T c cuprates. Micron, 2000, 31, 551-557.	1.1	3
567	Mesoporous silicas of hierarchical structure by hydrothermal surfactant-templating under mild alkali conditions. Studies in Surface Science and Catalysis, 2002, 141, 133-140.	1.5	3
568	In situ characterization of optoelectronic nanostructures and nanodevices. Frontiers of Physics in China, 2010, 5, 405-413.	1.0	3
569	Three-dimensional Bi2Se3 nanopattern films self-assembled with ultrathin nanosheets on the surface of Se nanotubes. Journal of Crystal Growth, 2010, 312, 3455-3460.	0.7	3
570	Current sustainability and electromigration of Pd, Sc and Y thin-films as potential interconnects. Nano-Micro Letters, 2010, 2, 184-189.	14.4	3
571	Whole-journey nanomaterial research in an electron microscope: from material synthesis, composition characterization, property measurements to device construction and tests. Nanotechnology, 2016, 27, 485710.	1.3	3
572	Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures. Journal of Applied Physics, 2018, 123, .	1.1	3
573	Transport signatures of relativistic quantum scars in a graphene cavity. Physical Review B, 2020, 101, .	1.1	3
574	Broadband Photodetectors: Broadband Bi ₂ O ₂ Se Photodetectors from Infrared to Terahertz (Adv. Funct. Mater. 14/2021). Advanced Functional Materials, 2021, 31, 2170093.	7.8	3
575	The role of Cu crystallographic orientations towards growing superclean graphene on meter-sized scale. Nano Research, 2022, 15, 3775-3780.	5 . 8	3
576	Giant Negative Differential Resistance Effect Caused by Cutting off Acceptable Quantum States in Carbon Nanotube Tunneling Devices. Advanced Electronic Materials, 2022, 8, .	2.6	3

#	Article	IF	CITATIONS
577	A combined REM and WTEM study of GaAs/Al _x Ga _{l-x} As multilayer structures. Philosophical Magazine Letters, 1991, 64, 261-267.	0.5	2
578	Reflection electron microscopy imaging of GaAs/AlxGa1â^'xAs multilayer materials. Philosophical Magazine Letters, 1992, 66, 9-17.	0.5	2
579	Distorted wave approach to diffuse scattering in THEED and RHEED. Ultramicroscopy, 1993, 52, 393-399.	0.8	2
580	Reflection electron imaging of semiconductor multilayer materials. Ultramicroscopy, 1993, 48, 453-463.	0.8	2
581	Observation of ferromagnetic correlation in phase-separated Cu-rich La2CuO4.003. Solid State Communications, 1998, 108, 949-952.	0.9	2
582	Thermal stability of electrical and magnetic properties of a nanocrystalline Hf-Ni alloy. Philosophical Magazine Letters, 1998, 77, 345-350.	0.5	2
583	Void-like defects in annealed Czochralski silicon. Applied Physics Letters, 1998, 73, 2311-2312.	1.5	2
584	Single wall carbon nanotubes and their electrical properties. Science in China Series A: Mathematics, 2000, 43, 1182-1188.	0.5	2
585	The role of excess Cu on La2CuO4 system. Physica C: Superconductivity and Its Applications, 2001, 350, 127-131.	0.6	2
586	Formation energetics of n-member rings at the end of small zigzag carbon nanotubes. Chemical Physics Letters, 2002, 358, 103-109.	1.2	2
587	Growth of compound single- and multi-walled carbon nanotubes. Ultramicroscopy, 2004, 98, 195-200.	0.8	2
588	A new approach to simulate the depolymerization process of a two-dimensional hexagonal C60 polymer. Chemical Physics Letters, 2004, 398, 486-488.	1.2	2
589	Field Effect and Photoelectronic Property of Nanodevices Made from Single Bi2S3 Nanowire. , 2006, , .		2
590	Photodetectors: Room Temperature Broadband Infrared Carbon Nanotube Photodetector with High Detectivity and Stability (Advanced Optical Materials 2/2016). Advanced Optical Materials, 2016, 4, 188-188.	3.6	2
591	Single Crystals: Clean Transfer of Large Graphene Single Crystals for Highâ€Intactness Suspended Membranes and Liquid Cells (Adv. Mater. 26/2017). Advanced Materials, 2017, 29, .	11.1	2
592	Surprisingly fast cooling in graphene-based van der Waals stacks. Science China Materials, 2018, 61, 1017-1018.	3.5	2
593	Frontispiece: Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie - International Edition, 2019, 58, .	7.2	2

Photodetectors: Bolometric Effect in Bi₂O₂Se Photodetectors (Small) Tj ETQq0 0 0 rgBT $_{5.2}^{1}$ Qverlock $_{2}^{1}$ 0 Tf 50 6 $_{2}^{1}$ 0 Tf 50 6 $_{3.2}^{1}$ 0 Tf 50 $_{3.2}^{1}$ 0 Tf 50

#	Article	IF	CITATIONS
595	Graphene Acoustic Phononâ€Mediated Pseudoâ€Landau Levels Tailoring Probed by Scanning Tunneling Spectroscopy. Small, 2020, 16, 1905202.	5.2	2
596	Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode. Journal of Physical Chemistry Letters, 2021, 12, 2886-2891.	2.1	2
597	Sub-10mK-Resolution Thermal-Bolometric Integrated FET-Type Sensors Based on Layered Bi2O2Se Semiconductor Nanosheets., 2020,,.		2
598	The effects of the transfer process on the quality of CVD-grown graphene. Chinese Science Bulletin, 2014, 59, 3322-3328.	0.4	2
599	REM observation of electron-beam-induced reactions on GaAs(110) surface. Ultramicroscopy, 1989, 27, 423-426.	0.8	1
600	Application of reflection electron microscopy in cross-sectional study of multilayer semiconductor devices. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1992, 10, 2293.	1.6	1
601	Bloch wave treatment of symmetry and multiple beam cases in reflection high energy electron diffraction and reflection electron microscopy. Microscopy Research and Technique, 1992, 20, 360-370.	1.2	1
602	LACBED determination of structure factors and alloy composition of GeSi/Si SLS. Ultramicroscopy, 1994, 55, 67-73.	0.8	1
603	Total energy of charged carbon nanotubes and single-electron tunneling. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 27, 26-31.	1.3	1
604	Spatially and Angularly Resolved Cathodoluminescence Study of Single ZnO Nanorods. Journal of Nanoscience and Nanotechnology, 2010, 10, 7158-7161.	0.9	1
605	Carbon based high performance doping-free nanoelectronic and optoelectronic devices. , 2010, , .		1
606	Direct observation of substrate induced exciton in carbon nanotube. Applied Physics Letters, 2013, 103,	1.5	1
607	Transition of temperature coefficient of conductance in weakly coupled gold nanoparticle arrays. Applied Physics Letters, 2014, 105, 233116.	1.5	1
608	Graphene: Controlled Growth of Single-Crystal Twelve-Pointed Graphene Grains on a Liquid Cu Surface (Adv. Mater. 37/2014). Advanced Materials, 2014, 26, 6519-6519.	11.1	1
609	Synthesis of dispersed long single-crystalline TiO2 paste and its application in DSSC as a scattering layer. Science China Chemistry, 2015, 58, 1501-1507.	4.2	1
610	CNT Electronics: Advances in Highâ€Performance Carbonâ€Nanotube Thinâ€Film Electronics (Adv. Electron.) Tj E	ETQq0 0 0	rgBT /Overloc
611	High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. , 0, .		1
612	High-performance lithium battery anodes using silicon nanowires. , 0, .		1

#	Article	IF	CITATIONS
613	Current sustainability and electromigration of Pd, Sc and Y thin-films as potential interconnects. Nano-Micro Letters, 2010, 2, 184.	14.4	1
614	The origins of electron back-scattering circular patterns. Surface Science Letters, 1991, 244, L133-L136.	0.1	0
615	New electric features in Cu-rich La2CuO4+ \hat{l}' system. Physica C: Superconductivity and Its Applications, 2001, 364-365, 446-449.	0.6	0
616	Coexistence of ferromagnetism and superconductivity in Cu-rich lanthanum Cu-oxides. European Physical Journal B, 2002, 25, 19-23.	0.6	0
617	Phase-Change Nanowires for Non Volatile Memory. Materials Research Society Symposia Proceedings, 2007, 997, 1.	0.1	0
618	Thermoelectric Measurement of Multi-Walled Carbon Nanotube Bundles by Using Nano-Probes. Journal of Nanoscience and Nanotechnology, 2010, 10, 4985-4991.	0.9	0
619	Modified RCA clean transfer of graphene and all-carbon electronic devices fabrication. , 2011, , .		0
620	Properties of photochlorinated graphene. , 2011, , .		0
621	Free Radicals: Free Radical Reactions in Two Dimensions: A Case Study on Photochlorination of Graphene (Small 8/2013). Small, 2013, 9, 1387-1387.	5.2	0
622	Graphene: Layerâ€Stacking Growth and Electrical Transport of Hierarchical Graphene Architectures (Adv. Mater. 20/2014). Advanced Materials, 2014, 26, 3355-3355.	11.1	0
623	Photovoltaic Devices: Toward High-Performance Carbon Nanotube Photovoltaic Devices (Adv. Energy) Tj ETQq1	1 0.78431 10.2	4 rgBT /Over
624	Fieldâ€Effect Transistors: Edgeâ€Statesâ€Induced Disruption to the Energy Band Alignment at Thicknessâ€Modulated Molybdenum Sulfide Junctions (Adv. Electron. Mater. 8/2016). Advanced Electronic Materials, 2016, 2, .	2.6	0
625	Electrostatics and quantum efficiency simulations of asymmetrically contacted carbon nanotube photodetector. AIP Advances, 2017, 7, 105111.	0.6	0
626	Frontispiz: Largeâ€Area Synthesis of Superclean Graphene via Selective Etching of Amorphous Carbon with Carbon Dioxide. Angewandte Chemie, 2019, 131, .	1.6	0
627	Thin Film FETs: Exploring the Performance Limit of Carbon Nanotube Network Film Fieldâ€Effect Transistors for Digital Integrated Circuit Applications (Adv. Funct. Mater. 16/2019). Advanced Functional Materials, 2019, 29, 1970106.	7.8	0
628	Surface-bulk coupling in a Bi2Te3 nanoplate grown by van der Waals epitaxy. Nanoscale, 2022, , .	2.8	0