Thomas Foltynie Mrcp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7540875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
2	Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 2013, 74, 449-457.	5.3	1,046
3	The distinct cognitive syndromes of Parkinson's disease: 5 year follow-up of the CamPaIGN cohort. Brain, 2009, 132, 2958-2969.	7.6	842
4	The cognitive ability of an incident cohort of Parkinson's patients in the UK. The CamPalGN study. Brain, 2004, 127, 550-560.	7.6	605
5	The CamPalGN study of Parkinson's disease: 10-year outlook in an incident population-based cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1258-1264.	1.9	534
6	Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial. Lancet, The, 2017, 390, 1664-1675.	13.7	527
7	Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. Brain, 2011, 134, 359-374.	7.6	387
8	Exenatide and the treatment of patients with Parkinson's disease. Journal of Clinical Investigation, 2013, 123, 2730-2736.	8.2	361
9	Parkinson's disease dementia: a neural networks perspective. Brain, 2015, 138, 1454-1476.	7.6	333
10	Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. American Journal of Human Genetics, 2016, 98, 500-513.	6.2	333
11	Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. Journal of Neurosurgery, 2012, 116, 84-94.	1.6	331
12	Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain, 2017, 140, 3191-3203.	7.6	323
13	Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub-parcellation using diffusion weighted imaging. NeuroImage, 2012, 60, 83-94.	4.2	294
14	Bilateral adaptive deep brain stimulation is effective in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 717-721.	1.9	269
15	Glucocerebrosidase mutations influence the natural history of Parkinson's disease in a community-based incident cohort. Brain, 2013, 136, 392-399.	7.6	266
16	Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain, 2014, 137, 1481-1495.	7.6	258
17	Long-term Clinical Outcome of Fetal Cell Transplantation for Parkinson Disease. JAMA Neurology, 2014, 71, 83.	9.0	257
18	Tau and αâ€synuclein in susceptibility to, and dementia in, Parkinson's disease. Annals of Neurology, 2007, 62, 145-153.	5.3	256

#	Article	IF	CITATIONS
19	Long-term outcomes of deep brain stimulation in Parkinson disease. Nature Reviews Neurology, 2019, 15, 234-242.	10.1	250
20	The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. Drug Discovery Today, 2016, 21, 802-818.	6.4	247
21	Parkinson's disease, insulin resistance and novel agents of neuroprotection. Brain, 2013, 136, 374-384.	7.6	239
22	Tourette syndrome deep brain stimulation: A review and updated recommendations. Movement Disorders, 2015, 30, 448-471.	3.9	236
23	Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease. Brain, 2016, 139, 1482-1496.	7.6	213
24	Stimulating at the right time: phase-specific deep brain stimulation. Brain, 2017, 140, 132-145.	7.6	213
25	Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations. JAMA Neurology, 2020, 77, 427.	9.0	213
26	The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nature Reviews Neurology, 2015, 11, 25-40.	10.1	211
27	Motor and Cognitive Advantages Persist 12 Months After Exenatide Exposure in Parkinson's Disease. Journal of Parkinson's Disease, 2014, 4, 337-344.	2.8	206
28	The natural history of treated Parkinson's disease in an incident, community based cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1112-1118.	1.9	200
29	Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1388-1389.	1.9	199
30	The heterogeneity of idiopathic Parkinson's disease. Journal of Neurology, 2002, 249, 138-145.	3.6	198
31	Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease. NeuroImage, 2017, 158, 332-345.	4.2	197
32	Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on â€effective' connectivity. Brain, 2014, 137, 1130-1144.	7.6	196
33	Efficacy and Safety of Deep Brain Stimulation in Tourette Syndrome. JAMA Neurology, 2018, 75, 353.	9.0	186
34	Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. Annals of Neurology, 2005, 57, 564-567.	5.3	178
35	Which patients with dystonia benefit from deep brain stimulation? A metaregression of individual patient outcomes. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 1383-1389.	1.9	177
36	Movement-Related Changes in Local and Long-Range Synchronization in Parkinson's Disease Revealed by Simultaneous Magnetoencephalography and Intracranial Recordings. Journal of Neuroscience, 2012, 32, 10541-10553.	3.6	176

#	Article	IF	CITATIONS
37	Utility of Neuronal-Derived Exosomes to Examine Molecular Mechanisms That Affect Motor Function in Patients With Parkinson Disease. JAMA Neurology, 2019, 76, 420.	9.0	169
38	Pedunculopontine nucleus deep brain stimulation in Parkinson's disease: A clinical review. Movement Disorders, 2018, 33, 10-20.	3.9	166
39	Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson's disease. Clinical Neurophysiology, 2016, 127, 2010-2019.	1.5	159
40	Bilateral globus pallidus stimulation for severe Tourette's syndrome: a double-blind, randomised crossover trial. Lancet Neurology, The, 2015, 14, 595-605.	10.2	155
41	Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage: Clinical, 2018, 18, 130-142.	2.7	154
42	Lysine 27 Ubiquitination of the Mitochondrial Transport Protein Miro Is Dependent on Serine 65 of the Parkin Ubiquitin Ligase. Journal of Biological Chemistry, 2014, 289, 14569-14582.	3.4	152
43	A Randomized Trial Directly Comparing Ventral Capsule and Anteromedial Subthalamic Nucleus Stimulation in Obsessive-Compulsive Disorder: Clinical and Imaging Evidence for Dissociable Effects. Biological Psychiatry, 2019, 85, 726-734.	1.3	152
44	Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study. PLoS Medicine, 2017, 14, e1002314.	8.4	152
45	Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson's disease using an MRI-guided and MRI-verified approach. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1419-1425.	1.9	151
46	The nucleus basalis of Meynert: A new target for deep brain stimulation in dementia?. Neuroscience and Biobehavioral Reviews, 2013, 37, 2676-2688.	6.1	145
47	Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson's Disease. Journal of Neurology, 2009, 256, 493-498.	3.6	141
48	Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain, 2012, 135, 148-160.	7.6	141
49	Progress towards therapies for disease modification in Parkinson's disease. Lancet Neurology, The, 2021, 20, 559-572.	10.2	136
50	Midline Frontal Cortex Low-Frequency Activity Drives Subthalamic Nucleus Oscillations during Conflict. Journal of Neuroscience, 2014, 34, 7322-7333.	3.6	133
51	Prediction of cognition in Parkinson's disease with a clinical–genetic score: a longitudinal analysis of nine cohorts. Lancet Neurology, The, 2017, 16, 620-629.	10.2	131
52	The Risk of Hardware Infection in Deep Brain Stimulation Surgery Is Greater at Impulse Generator Replacement than at the Primary Procedure. Stereotactic and Functional Neurosurgery, 2013, 91, 56-65.	1.5	129
53	A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Human Molecular Genetics, 2013, 22, 1039-1049.	2.9	122
54	The glucocerobrosidase E326K variant predisposes to Parkinson's disease, but does not cause Gaucher's disease. Movement Disorders, 2013, 28, 232-236.	3.9	121

#	Article	IF	CITATIONS
55	Developing and validating Parkinson's disease subtypes and their motor and cognitive progression. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1279-1287.	1.9	116
56	Cognitive Deficits and Psychosis in Parkinson???s Disease. CNS Drugs, 2006, 20, 477-505.	5.9	115
57	Modulation of Beta Bursts in the Subthalamic Nucleus Predicts Motor Performance. Journal of Neuroscience, 2018, 38, 8905-8917.	3.6	113
58	Bilateral Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson Disease Dementia. JAMA Neurology, 2018, 75, 169.	9.0	112
59	A Missense Mutation in KCTD17 Causes Autosomal Dominant Myoclonus-Dystonia. American Journal of Human Genetics, 2015, 96, 938-947.	6.2	109
60	Diabetes medications and risk of Parkinson's disease: a cohort study of patients with diabetes. Brain, 2020, 143, 3067-3076.	7.6	108
61	Deep brain stimulation for Gilles de la Tourette syndrome: A case series targeting subregions of the globus pallidus internus. Movement Disorders, 2011, 26, 1922-1930.	3.9	103
62	Features of <i>GBA</i> -associated Parkinson's disease at presentation in the UK <i>Tracking Parkinson's</i> study. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 702-709.	1.9	103
63	The BDNF Val66Met polymorphism has a gender specific influence on planning ability in Parkinson's disease. Journal of Neurology, 2005, 252, 833-838.	3.6	102
64	The Association Between Type 2 Diabetes Mellitus and Parkinson's Disease. Journal of Parkinson's Disease, 2020, 10, 775-789.	2.8	101
65	Genomeâ€Wide Association Studies of Cognitive and Motor Progression in Parkinson's Disease. Movement Disorders, 2021, 36, 424-433.	3.9	101
66	Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson's disease. Brain, 2015, 138, 3003-3015.	7.6	100
67	A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76.	12.4	100
68	Subthalamic Nucleus Local Field Potential Activity during the Eriksen Flanker Task Reveals a Novel Role for Theta Phase during Conflict Monitoring. Journal of Neuroscience, 2013, 33, 14758-14766.	3.6	99
69	Clinical Safety of Brain Magnetic Resonance Imaging with Implanted Deep Brain Stimulation Hardware: Large Case Series and Review of the Literature. World Neurosurgery, 2011, 76, 164-172.	1.3	97
70	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology, 2021, 78, 464.	9.0	95
71	Management of Advanced Therapies in Parkinson's Disease Patients in Times of Humanitarian Crisis: The <scp>COVID</scp> â€19 Experience. Movement Disorders Clinical Practice, 2020, 7, 361-372.	1.5	91
72	The nature of tremor circuits in parkinsonian and essential tremor. Brain, 2014, 137, 3223-3234.	7.6	90

#	Article	IF	CITATIONS
73	Decision making, impulsivity, and addictions: Do Parkinson's disease patients jump to conclusions?. Movement Disorders, 2012, 27, 1137-1145.	3.9	85
74	MRI-Guided Subthalamic Nucleus Deep Brain Stimulation without Microelectrode Recording: Can We Dispense with Surgery under Local Anaesthesia?. Stereotactic and Functional Neurosurgery, 2011, 89, 318-325.	1.5	82
75	Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease: The Effect of Varying Stimulation Parameters. Journal of Parkinson's Disease, 2017, 7, 235-245.	2.8	81
76	Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1078-1090.	1.9	81
77	Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation. Brain, 2013, 136, 3062-3075.	7.6	80
78	Predictive factors of speech intelligibility following subthalamic nucleus stimulation in consecutive patients with Parkinson's disease. Movement Disorders, 2014, 29, 532-538.	3.9	79
79	Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson's disease. Scientific Reports, 2017, 7, 9882.	3.3	79
80	Genotype and phenotype in Parkinson's disease: Lessons in heterogeneity from deep brain stimulation. Movement Disorders, 2013, 28, 1370-1375.	3.9	77
81	Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data. Lancet Neurology, The, 2016, 15, 585-596.	10.2	77
82	Differentiation and migration of long term expanded human neural progenitors in a partial lesion model of Parkinson's disease. International Journal of Biochemistry and Cell Biology, 2004, 36, 702-713.	2.8	73
83	Surgical management of Parkinson's disease. Expert Review of Neurotherapeutics, 2010, 10, 903-914.	2.8	72
84	Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks. ELife, 2017, 6, .	6.0	71
85	Understanding the Links Between Cardiovascular Disease and Parkinson's Disease. Movement Disorders, 2020, 35, 55-74.	3.9	71
86	An approach to deep brain stimulation for severe treatment-refractory Tourette syndrome: the UK perspective. British Journal of Neurosurgery, 2011, 25, 38-44.	0.8	70
87	Neuroendocrine abnormalities in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 176-185.	1.9	70
88	Protective effects of the GLP-1 mimetic exendin-4 in Parkinson's disease. Neuropharmacology, 2018, 136, 260-270.	4.1	68
89	Human subthalamic nucleus–medial frontal cortex theta phase coherence is involved in conflict and error related cortical monitoring. NeuroImage, 2016, 137, 178-187. 	4.2	66
90	Mechanisms Underlying Decision-Making as Revealed by Deep-Brain Stimulation in Patients with Parkinson's Disease. Current Biology, 2018, 28, 1169-1178.e6.	3.9	66

#	Article	IF	CITATIONS
91	Alternating Modulation of Subthalamic Nucleus Beta Oscillations during Stepping. Journal of Neuroscience, 2018, 38, 5111-5121.	3.6	66
92	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	3.9	66
93	Therapeutic Subthalamic Nucleus Deep Brain Stimulation Reverses Cortico-Thalamic Coupling during Voluntary Movements in Parkinson's Disease. PLoS ONE, 2012, 7, e50270.	2.5	66
94	Understanding DCM: Ten simple rules for the clinician. NeuroImage, 2013, 83, 542-549.	4.2	65
95	Differences in <scp>MDS</scp> â€ <scp>UPDRS</scp> Scores Based on Hoehn and Yahr Stage and Disease Duration. Movement Disorders Clinical Practice, 2017, 4, 536-544.	1.5	65
96	Neural signatures of hyperdirect pathway activity in Parkinson's disease. Nature Communications, 2021, 12, 5185.	12.8	65
97	Tracking Parkinson's: Study Design and Baseline Patient Data. Journal of Parkinson's Disease, 2015, 5, 947-959.	2.8	64
98	Genetic analysis of Mendelian mutations in a large UK population-based Parkinson's disease study. Brain, 2019, 142, 2828-2844.	7.6	62
99	Deep brain stimulation in the treatment of chorea. Movement Disorders, 2012, 27, 357-363.	3.9	61
100	Human Subthalamic Nucleus in Movement Error Detection and Its Evaluation during Visuomotor Adaptation. Journal of Neuroscience, 2014, 34, 16744-16754.	3.6	61
101	Tremor Reduction by Deep Brain Stimulation Is Associated With Gamma Power Suppression in Parkinson's Disease. Neuromodulation, 2015, 18, 349-354.	0.8	60
102	Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease. Brain, 2012, 135, 2766-2778.	7.6	59
103	Penetrance of Parkinson's Disease in <i>LRRK2</i> p.G2019S Carriers Is Modified by a Polygenic Risk Score. Movement Disorders, 2020, 35, 774-780.	3.9	57
104	Genetic and pathological links between Parkinson's disease and the lysosomal disorder Sanfilippo syndrome. Movement Disorders, 2012, 27, 312-315.	3.9	56
105	Influence of Single Nucleotide Polymorphisms in <i>COMT</i> , <i>MAO-A</i> and <i>BDNF</i> Genes on Dyskinesias and Levodopa Use in Parkinson's Disease. Neurodegenerative Diseases, 2014, 13, 24-28.	1.4	56
106	Dopaminergic Neuronal Imaging in Genetic Parkinson's Disease: Insights into Pathogenesis. PLoS ONE, 2013, 8, e69190.	2.5	55
107	The International Deep Brain Stimulation Registry and Database for Gilles de la Tourette Syndrome: How Does It Work?. Frontiers in Neuroscience, 2016, 10, 170.	2.8	55
108	Vascular Parkinsonism: A Review of the Precision and Frequency of the Diagnosis. Neuroepidemiology, 2002, 21, 1-7.	2.3	52

#	Article	IF	CITATIONS
109	Challenges in detecting disease modification in Parkinson's disease clinical trials. Parkinsonism and Related Disorders, 2016, 32, 1-11.	2.2	52
110	Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: a protocol and experimental validation. Journal of Neuroscience Methods, 2016, 261, 29-46.	2.5	52
111	Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease. Movement Disorders, 2017, 32, 1174-1182.	3.9	52
112	Oscillatory Beta Power Correlates With Akinesiaâ€Rigidity in the Parkinsonian Subthalamic Nucleus. Movement Disorders, 2017, 32, 174-175.	3.9	52
113	Comparison of oscillatory activity in subthalamic nucleus in Parkinson's disease and dystonia. Neurobiology of Disease, 2017, 98, 100-107.	4.4	51
114	Improving Targeting in Image-Guided Frame-Based Deep Brain Stimulation. Operative Neurosurgery, 2010, 67, ons437-ons447.	0.8	50
115	Technologies Assessing Limb Bradykinesia in Parkinson's Disease. Journal of Parkinson's Disease, 2017, 7, 65-77.	2.8	50
116	Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome. Brain, 2020, 143, 2607-2623.	7.6	50
117	Gender distribution of patients with Parkinson's disease treated with subthalamic deep brain stimulation; a review of the 2000–2009 literature. Parkinsonism and Related Disorders, 2011, 17, 146-149.	2.2	49
118	Aberrant nigral diffusion in Parkinson's disease: A longitudinal diffusion tensor imaging study. Movement Disorders, 2016, 31, 1020-1026.	3.9	49
119	European Academy of Neurology/Movement Disorder Societyâ€European Section Guideline on the Treatment of Parkinson's Disease: I. Invasive Therapies. Movement Disorders, 2022, 37, 1360-1374.	3.9	49
120	Early and marked benefit with GPi DBS for Lubag syndrome presenting with rapidly progressive lifeâ€ŧhreatening dystonia. Movement Disorders, 2009, 24, 1710-1712.	3.9	48
121	Impact of <i>GBA1</i> variants on long-term clinical progression and mortality in incident Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 695-702.	1.9	48
122	What Effects Might Exenatide have on Non-Motor Symptoms in Parkinson's Disease: A Post Hoc Analysis. Journal of Parkinson's Disease, 2018, 8, 247-258.	2.8	47
123	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Populationâ€5pecific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	3.9	47
124	Minimizing Brain Shift in Stereotactic Functional Neurosurgery. Operative Neurosurgery, 2010, 67, ons213-ons221.	0.8	46
125	Equating scores of the University of Pennsylvania Smell Identification Test and Sniffin' Sticks test in patients with Parkinson's disease. Parkinsonism and Related Disorders, 2016, 33, 96-101.	2.2	46
126	The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices. PLoS ONE, 2015, 10, e0129077.	2.5	46

#	Article	IF	CITATIONS
127	Parkinson Disease and Subthalamic Nucleus Deep Brain Stimulation: Cognitive Effects in <scp><i>GBA</i></scp> Mutation Carriers. Annals of Neurology, 2022, 91, 424-435.	5.3	46
128	¹¹ Câ€PE2I and ¹⁸ Fâ€Dopa PET for assessing progression rate in Parkinson's: A longitudinal study. Movement Disorders, 2018, 33, 117-127.	3.9	45
129	GBA-Associated Parkinson's Disease: Progression in a Deep Brain Stimulation Cohort. Journal of Parkinson's Disease, 2017, 7, 635-644.	2.8	44
130	Short and Long Term Outcome of Bilateral Pallidal Stimulation in Chorea-Acanthocytosis. PLoS ONE, 2013, 8, e79241.	2.5	44
131	Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Nature Communications, 2021, 12, 7342.	12.8	44
132	The Use of Deep Brain Stimulation in Tourette Syndrome. Brain Sciences, 2016, 6, 35.	2.3	43
133	Post hoc analysis of the Exenatideâ€ <scp>PD</scp> trial—Factors that predict response. European Journal of Neuroscience, 2019, 49, 410-421.	2.6	43
134	Development and external validation of a prognostic model in newly diagnosed Parkinson disease. Neurology, 2016, 86, 986-993.	1.1	42
135	Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans. ELife, 2016, 5, .	6.0	41
136	Subthalamic nucleus gamma activity increases not only during movement but also during movement inhibition. ELife, 2017, 6, .	6.0	41
137	Drug Repurposing in Parkinson's Disease. CNS Drugs, 2018, 32, 747-761.	5.9	40
138	Functional imaging of subthalamic nucleus deep brain stimulation in Parkinson's disease. Movement Disorders, 2011, 26, 1835-1843.	3.9	39
139	Dopamine Agonists Rather than Deep Brain Stimulation Cause Reflection Impulsivity in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 139-144.	2.8	39
140	Subthalamic Nucleus Local Field Potential Activity Helps Encode Motor Effort Rather Than Force in Parkinsonism. Journal of Neuroscience, 2015, 35, 5941-5949.	3.6	39
141	Different effects of dopaminergic medication on perceptual decision-making in Parkinson's disease as a function of task difficulty and speed–accuracy instructions. Neuropsychologia, 2015, 75, 577-587.	1.6	39
142	Motor Complications in Parkinson's Disease: 13â€Year Followâ€up of the CamPalGN Cohort. Movement Disorders, 2020, 35, 185-190.	3.9	39
143	Bilateral nucleus basalis of Meynert deep brain stimulation for dementia with Lewy bodies: A randomised clinical trial. Brain Stimulation, 2020, 13, 1031-1039.	1.6	39
144	Urinary incontinence following deep brain stimulation of the pedunculopontine nucleus. Acta Neurochirurgica, 2011, 153, 2357-2360.	1.7	37

#	Article	IF	CITATIONS
145	<scp>l</scp> -Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson's disease. Movement Disorders, 2017, 32, 874-883.	3.9	37
146	Treatment of dysarthria following subthalamic nucleus deep brain stimulation for Parkinson's disease. Movement Disorders, 2011, 26, 2434-2436.	3.9	35
147	Exenatide as a potential treatment for patients with Parkinson's disease: First steps into the clinic. Alzheimer's and Dementia, 2014, 10, S38-46.	0.8	35
148	Subthalamic nucleus deep brain stimulation induces impulsive action when patients with Parkinson's disease act under speed pressure. Experimental Brain Research, 2016, 234, 1837-1848.	1.5	35
149	Autonomic Dysfunction in Early Parkinson's Disease: Results from the United Kingdom Tracking Parkinson's Study. Movement Disorders Clinical Practice, 2017, 4, 509-516.	1.5	35
150	Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments. Journal of Neurology, 2015, 262, 2583-2595.	3.6	34
151	Do we need to revise the tripartite subdivision hypothesis of the human subthalamic nucleus (STN)? Response to Alkemade and Forstmann. NeuroImage, 2015, 110, 1-2.	4.2	33
152	Refining the Deep Brain Stimulation Target within the Limbic Globus Pallidus Internus for Tourette Syndrome. Stereotactic and Functional Neurosurgery, 2017, 95, 251-258.	1.5	33
153	Parkinsonian signs in patients with cervical dystonia treated with pallidal deep brain stimulation. Brain, 2018, 141, 3023-3034.	7.6	33
154	Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson's disease. Brain, 2019, 142, 2417-2431.	7.6	33
155	Exenatide once weekly over 2 years as a potential disease-modifying treatment for Parkinson's disease: protocol for a multicentre, randomised, double blind, parallel group, placebo controlled, phase 3 trial: The â€~Exenatide-PD3' study. BMJ Open, 2021, 11, e047993.	1.9	32
156	Subthalamic nucleus beta and gamma activity is modulated depending on the level of imagined grip force. Experimental Neurology, 2017, 293, 53-61.	4.1	31
157	Pallidal stimulation for cervical dystonia does not correct abnormal temporal discrimination. Movement Disorders, 2013, 28, 1874-1877.	3.9	30
158	Loss of phosphodiesterase 4 in Parkinson disease. Neurology, 2017, 89, 586-593.	1.1	30
159	Video-Based Analyses of Parkinson's Disease Severity: A Brief Review. Journal of Parkinson's Disease, 2021, 11, S83-S93.	2.8	30
160	The Impact of Type 2 Diabetes in Parkinson's Disease. Movement Disorders, 2022, 37, 1612-1623.	3.9	30
161	Parkinson's disease: an update on pathogenesis and treatment. Journal of Neurology, 2013, 260, 1433-1440.	3.6	29
162	Is Exenatide a Treatment for Parkinson's Disease?. Journal of Parkinson's Disease, 2017, 7, 451-458.	2.8	29

#	Article	IF	CITATIONS
163	Proximity extension assay testing reveals novel diagnostic biomarkers of atypical parkinsonian syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 768-773.	1.9	29
164	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	5.3	29
165	How Does Deep Brain Stimulation Change the Course of Parkinson's Disease?. Movement Disorders, 2022, 37, 1581-1592.	3.9	29
166	The Parkinsonian Subthalamic Network: Measures of Power, Linear, and Non-linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity. Frontiers in Human Neuroscience, 2016, 10, 517.	2.0	28
167	The Effect of Short Pulse Width Settings on the Therapeutic Window in Subthalamic Nucleus Deep Brain Stimulation for Parkinson's disease. Journal of Parkinson's Disease, 2018, 8, 273-279.	2.8	28
168	Changing of the guard: reducing infection when replacing neural pacemakers. Journal of Neurosurgery, 2017, 126, 1165-1172.	1.6	27
169	Dopaminergic treatment modulates sensory attenuation at the onset of the movement in Parkinson's disease: A test of a new framework for bradykinesia. Movement Disorders, 2016, 31, 143-146.	3.9	26
170	Repurposing anti-diabetic drugs for the treatment of Parkinson's disease: Rationale and clinical experience. Progress in Brain Research, 2020, 252, 493-523.	1.4	26
171	A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson's Disease. Sensors, 2021, 21, 5437.	3.8	26
172	European clinical guidelines for Tourette syndrome and other tic disorders—version 2.0. Part IV: deep brain stimulation. European Child and Adolescent Psychiatry, 2022, 31, 443-461.	4.7	26
173	Gene therapy: a viable therapeutic strategy for Parkinson's disease?. Journal of Neurology, 2011, 258, 179-188.	3.6	25
174	Balance between competing spectral states in subthalamic nucleus is linked to motor impairment in Parkinson's disease. Brain, 2022, 145, 237-250.	7.6	25
175	Subthalamic nucleus gamma oscillations mediate a switch from automatic to controlled processing: A study of random number generation in Parkinson's disease. NeuroImage, 2013, 64, 284-289.	4.2	24
176	Statins are underused in recent-onset Parkinson's disease with increased vascular risk: findings from the UK Tracking Parkinson's and Oxford Parkinson's Disease Centre (OPDC) discovery cohorts. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1183-1190.	1.9	24
177	Cortical connectivity of the nucleus basalis of Meynert in Parkinson's disease and Lewy body dementias. Brain, 2021, 144, 781-788.	7.6	24
178	The BRadykinesia Akinesia INcoordination (BRAIN) Tap Test: Capturing the Sequence Effect. Movement Disorders Clinical Practice, 2019, 6, 462-469.	1.5	23
179	Short Versus Conventional Pulseâ€Width Deep Brain Stimulation in Parkinson's Disease: A Randomized Crossover Comparison. Movement Disorders, 2020, 35, 101-108.	3.9	23
180	Therapeutic Strategies to Treat or Prevent Off Episodes in Adults with Parkinson's Disease. Drugs, 2020, 80, 775-796.	10.9	23

#	Article	IF	CITATIONS
181	Perceptual decision-making in patients with Parkinson's disease. Journal of Psychopharmacology, 2014, 28, 1149-1154.	4.0	22
182	Functional Connectivity of the Pedunculopontine Nucleus and Surrounding Region in Parkinson's Disease. Cerebral Cortex, 2017, 27, 54-67.	2.9	22
183	Noninvasive options for â€~wearing-off' in Parkinson's disease: a clinical consensus from a panel of UK Parkinson's disease specialists. Neurodegenerative Disease Management, 2018, 8, 349-360.	2.2	22
184	Effect of Low versus High Frequency Subthalamic Deep Brain Stimulation on Speech Intelligibility and Verbal Fluency in Parkinson's Disease: A Double-Blind Study. Journal of Parkinson's Disease, 2019, 9, 141-151.	2.8	22
185	Variation in Recent Onset Parkinson's Disease: Implications for Prodromal Detection. Journal of Parkinson's Disease, 2016, 6, 289-300.	2.8	21
186	Successful pallidal deep brain stimulation in 15-year-old with Tourette syndrome: 2-year follow-up. Journal of Neurology, 2013, 260, 2417-2419.	3.6	20
187	Novel Programming Features Help Alleviate Subthalamic Nucleus Stimulationâ€Induced Side Effects. Movement Disorders, 2020, 35, 2261-2269.	3.9	20
188	A case of voltage-gated potassium channel antibody-related limbic encephalitis. Nature Clinical Practice Neurology, 2006, 2, 339-343.	2.5	19
189	Deep brain stimulation as a treatment for chorea-acanthocytosis. Journal of Neurology, 2013, 260, 303-305.	3.6	19
190	Controlling Parkinson's Disease With Adaptive Deep Brain Stimulation. Journal of Visualized Experiments, 2014, , .	0.3	19
191	Therapies to Slow, Stop, or Reverse Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, S115-S121.	2.8	19
192	Imageâ€verified deep brain stimulation reduces risk and cost with no apparent impact on efficacy. Movement Disorders, 2012, 27, 1585-1586.	3.9	18
193	Decisions Made with Less Evidence Involve Higher Levels of Corticosubthalamic Nucleus Theta Band Synchrony. Journal of Cognitive Neuroscience, 2016, 28, 811-825.	2.3	18
194	Ursodeoxycholic acid as a novel disease-modifying treatment for Parkinson's disease: protocol for a two-centre, randomised, double-blind, placebo-controlled trial, The 'UP' study. BMJ Open, 2020, 10, e038911.	1.9	18
195	Longitudinal functional connectivity changes related to dopaminergic decline in Parkinson's disease. NeuroImage: Clinical, 2020, 28, 102409.	2.7	17
196	Letter to the Editor: A paradigm shift toward MRI-guided and MRI-verified DBS surgery. Journal of Neurosurgery, 2016, 124, 1135-1138.	1.6	16
197	Effects of pedunculopontine nucleus stimulation on human bladder function. Neurourology and Urodynamics, 2018, 37, 726-734.	1.5	16
198	Beta synchrony in the cortico-basal ganglia network during regulation of force control on and off dopamine. Neurobiology of Disease, 2019, 127, 253-263.	4.4	16

#	Article	IF	CITATIONS
199	A genome-wide screen for association in Hungarian multiple sclerosis. Journal of Neuroimmunology, 2003, 143, 84-87.	2.3	15
200	The Factor Structure of the UPDRS as an Index of Disease Progression in Parkinson's Disease. Journal of Parkinson's Disease, 2011, 1, 75-82.	2.8	15
201	Analysis of ATP13A2 in large neurodegeneration with brain iron accumulation (NBIA) and dystonia-parkinsonism cohorts. Neuroscience Letters, 2012, 523, 35-38.	2.1	15
202	Utility of the new Movement Disorder Society clinical diagnostic criteria for Parkinson's disease applied retrospectively in a large cohort study of recent onset cases. Parkinsonism and Related Disorders, 2017, 40, 40-46.	2.2	15
203	Apathy and Reduced Speed of Processing Underlie Decline in Verbal Fluency following DBS. Behavioural Neurology, 2017, 2017, 1-10.	2.1	15
204	Highâ€frequency peripheral vibration decreases completion time on a number of motor tasks. European Journal of Neuroscience, 2018, 48, 1789-1802.	2.6	15
205	Glycolysis as a therapeutic target for Parkinson's disease. Lancet Neurology, The, 2019, 18, 1072-1074.	10.2	15
206	Comparison of phosphodiesterase 10A and dopamine transporter levels as markers of disease burden in early Parkinson's disease. Movement Disorders, 2019, 34, 1505-1515.	3.9	15
207	Resting state activity and connectivity of the nucleus basalis of Meynert and globus pallidus in Lewy body dementia and Parkinson's disease dementia. NeuroImage, 2020, 221, 117184.	4.2	15
208	Impairment in Theory of Mind in Parkinson's Disease Is Explained by Deficits in Inhibition. Parkinson's Disease, 2019, 2019, 1-8.	1.1	14
209	L-dopa responsiveness in early Parkinson's disease is associated with the rate of motor progression. Parkinsonism and Related Disorders, 2019, 65, 55-61.	2.2	14
210	Ropinirole, a dopamine agonist with high D3 affinity, reduces proactive inhibition: A double-blind, placebo-controlled study in healthy adults. Neuropharmacology, 2020, 179, 108278.	4.1	14
211	Diabetes, BMI, and Parkinson's. Movement Disorders, 2020, 35, 201-203.	3.9	14
212	A whole genome association study in multiple sclerosis patients from north Portugal. Journal of Neuroimmunology, 2003, 143, 116-119.	2.3	13
213	Imageâ€guided and imageâ€verified deep brain stimulation. Movement Disorders, 2013, 28, 254-254.	3.9	13
214	Validation of a UPDRS-/MDS-UPDRS-based definition of functional dependency for Parkinson's disease. Parkinsonism and Related Disorders, 2020, 76, 49-53.	2.2	13
215	Computer-vision based method for quantifying rising from chair in Parkinson's disease patients. Intelligence-based Medicine, 2022, 6, 100046.	2.4	13
216	Early nucleus basalis of Meynert degeneration predicts cognitive decline in Parkinson's disease. Brain, 2018, 141, 7-10.	7.6	12

#	Article	IF	CITATIONS
217	Basal Ganglia Pathways Associated With Therapeutic Pallidal Deep Brain Stimulation for Tourette Syndrome. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 961-972.	1.5	12
218	Pedunculopontine Nucleus Deep Brain Stimulation for Parkinsonian Disorders: A Case Series. Stereotactic and Functional Neurosurgery, 2021, 99, 287-294.	1.5	12
219	Entraining Stepping Movements of Parkinson's Patients to Alternating Subthalamic Nucleus Deep Brain Stimulation. Journal of Neuroscience, 2020, 40, 8964-8972.	3.6	12
220	Stimulation Sweet Spot in Subthalamic Deep Brain Stimulation – Myth or Reality? A Critical Review of Literature. Stereotactic and Functional Neurosurgery, 2021, 99, 425-442.	1.5	12
221	Varying time-course of effects of high frequency stimulation of sub-regions of the globus pallidus in patients with parkinson's disease. Parkinsonism and Related Disorders, 2015, 21, 597-602.	2.2	11
222	Deep brain stimulation of the subthalamic nucleus: histological verification and 9.4-T MRI correlation. Acta Neurochirurgica, 2015, 157, 2143-2147.	1.7	11
223	Standardised Neuropsychological Assessment for the Selection of Patients Undergoing DBS for Parkinson's Disease. Parkinson's Disease, 2018, 2018, 1-13.	1.1	11
224	Chronic Subthalamic Nucleus Stimulation in Parkinson's Disease: Optimal Frequency for Gait Depends on Stimulation Site and Axial Symptoms. Frontiers in Neurology, 2019, 10, 29.	2.4	11
225	The role of phosphodiesterase 4 in excessive daytime sleepiness in Parkinson's disease. Parkinsonism and Related Disorders, 2020, 77, 163-169.	2.2	11
226	Subthalamic nucleus deep brain stimulation for Parkinson's disease: current trends and future directions. Expert Review of Medical Devices, 2020, 17, 1063-1074.	2.8	11
227	Subcortical evoked activity and motor enhancement in Parkinson's disease. Experimental Neurology, 2016, 277, 19-26.	4.1	10
228	Impact of Subthalamic Deep Brain Stimulation Frequency on Upper Limb Motor Function in Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, 267-271.	2.8	10
229	Can Parkinson's disease be cured by stimulating neurogenesis?. Journal of Clinical Investigation, 2015, 125, 978-980.	8.2	10
230	Dynamic Network Connectivity Reveals Markers of Response to Deep Brain Stimulation in Parkinson's Disease. Frontiers in Human Neuroscience, 2021, 15, 729677.	2.0	10
231	In a Rush to Decide: Deep Brain Stimulation and Dopamine Agonist Therapy in Parkinson's Disease. Journal of Parkinson's Disease, 2014, 4, 579-583.	2.8	9
232	Bilateral Deep Brain Stimulation of the Clobus Pallidus Pars Interna in a Patient with Variant Ataxiaâ€Telangiectasia. Movement Disorders Clinical Practice, 2016, 3, 405-408.	1.5	9
233	Comparative epidemiology of incident Parkinson's disease in Cambridgeshire, UK: TableÂ1. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1034-1036.	1.9	9
234	Pathophysiological heterogeneity in Parkinson's disease: Neurophysiological insights from LRRK2 mutations. Movement Disorders, 2017, 32, 1333-1335.	3.9	9

#	ARTICLE	IF	CITATIONS
235	Identification of nonlinear features in cortical and subcortical signals of Parkinson's Disease patients via a novel efficient measure. NeuroImage, 2020, 223, 117356.	4.2	9
236	A common polymorphism in <i>SNCA</i> is associated with accelerated motor decline in <i>GBA</i> -Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 673-674.	1.9	9
237	Combining biomarkers for prognostic modelling of Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 707-715.	1.9	9
238	The Future of Incretin-Based Approaches for Neurodegenerative Diseases in Older Adults: Which to Choose? A Review of their Potential Efficacy and Suitability. Drugs and Aging, 2021, 38, 355-373.	2.7	8
239	The Parkinson's Real-World Impact Assessment (PRISM) Study: A European Survey of the Burden of Parkinson's Disease in Patients and their Carers. Journal of Parkinson's Disease, 2021, 11, 1309-1323.	2.8	8
240	A genome wide linkage disequilibrium screen in Parkinson's disease. Journal of Neurology, 2005, 252, 597-602.	3.6	7
241	No evidence for association between an MAOA functional polymorphism and susceptibility to Parkinson's disease. Journal of Neurology, 2009, 256, 132-133.	3.6	7
242	Glucagonâ€like Peptides (GLPâ€1) Perspectives in Synucleinopathies Treatment. Movement Disorders Clinical Practice, 2018, 5, 255-258.	1.5	7
243	Successful Treatment of Levodopa/Carbidopa Intestinal Gel Associated "Biphasicâ€like―Dyskinesia with Pallidal Deep Brain Stimulation. Movement Disorders Clinical Practice, 2021, 8, 273-274.	1.5	7
244	Skewering the Subthalamic Nucleus via a Parietal Approach. Stereotactic and Functional Neurosurgery, 2011, 89, 70-75.	1.5	6
245	Opicapone Efficacy and Tolerability in Parkinson's Disease Patients Reporting Insufficient Benefit/Failure of Entacapone. Movement Disorders Clinical Practice, 2020, 7, 955-960.	1.5	6
246	Volitional Control of Brain Motor Activity and Its Therapeutic Potential. Neuromodulation, 2022, 25, 1187-1196.	0.8	6
247	Uncertainty, misunderstanding and the pedunculopontine nucleus. Acta Neurochirurgica, 2012, 154, 839-841.	1.7	5
248	Thalamic audal Zona Incerta Deep Brain Stimulation for Refractory Orthostatic Tremor: A Report of 3 Cases. Movement Disorders Clinical Practice, 2017, 4, 105-110.	1.5	5
249	Globus pallidal deep brain stimulation for Tourette syndrome: Effects on cognitive function. Parkinsonism and Related Disorders, 2019, 69, 14-18.	2.2	5
250	Long-term success of low-frequency subthalamic nucleus stimulation for Parkinson's disease depends on tremor severity and symptom duration. Brain Communications, 2021, 3, fcab165.	3.3	5
251	Vocal tics in Tourette's syndrome. Lancet Neurology, The, 2016, 15, e1.	10.2	4
252	The effects of deep brain stimulation of the pedunculopontine nucleus on cognition in Parkinson's disease and Progressive Supranuclear Palsy. Clinical Parkinsonism & Related Disorders, 2019, 1, 48-51.	0.9	4

#	Article	IF	CITATIONS
253	Inhibitory Control on a Stop Signal Task in Tourette Syndrome before and after Deep Brain Stimulation of the Internal Segment of the Globus Pallidus. Brain Sciences, 2021, 11, 461.	2.3	4
254	Disease modifying therapies for Parkinson's disease: Novel targets. Neuropharmacology, 2021, 201, 108839.	4.1	4
255	The future challenges in Parkinson?s Disease. Journal of Neurology, 2004, 251, 361-365.	3.6	3
256	Writer's Cramp as the First Symptom of Spinocerebellar Ataxia 14. Movement Disorders Clinical Practice, 2015, 2, 41-42.	1.5	3
257	16â€A randomised controlled trial of deep brain stimulation in obsessive compulsive disorder: a comparison of ventral capsule/ventral striatum and subthalamic nucleus targets. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A8.2-A9.	1.9	3
258	Development and clinimetric assessment of a nurse-administered screening tool for movement disorders in psychosis. BJPsych Open, 2018, 4, 404-410.	0.7	3
259	Dopaminergic Modulation of Sensory Attenuation in Parkinson's Disease: Is There an Underlying Modulation of Beta Power?. Frontiers in Neurology, 2019, 10, 1001.	2.4	3
260	The long-term outcome of impulsive compulsive behaviours in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1288-1289.	1.9	3
261	Non-invasive intervention for motor signs of Parkinson's disease: the effect of vibratory stimuli. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 109-110.	1.9	3
262	Endurance of Short Pulse Width Thalamic Stimulation Efficacy in Intention Tremor. Stereotactic and Functional Neurosurgery, 2021, 99, 281-286.	1.5	3
263	A Randomized Trial Directly Comparing Ventral Capsule and Anteromedial Subthalamic Nucleus Stimulation in Obsessive-Compulsive Disorder: Clinical and Imaging Evidence for Dissociable Effects. Focus (American Psychiatric Publishing), 2022, 20, 160-169.	0.8	3
264	Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson's Disease Dementia: A 36 Months Follow Up Study. Movement Disorders Clinical Practice, 2022, 9, 765-774.	1.5	3
265	Conflict Detection in a Sequential Decision Task Is Associated with Increased Cortico-Subthalamic Coherence and Prolonged Subthalamic Oscillatory Response in the Î ² Band. Journal of Neuroscience, 2022, 42, 4681-4692.	3.6	2
266	Reply: Deep brain stimulation in Huntington's disease: A 4-year follow-up case report. Movement Disorders, 2012, 27, 808-808.	3.9	1
267	How can we judge the â€`long term' outcomes of novel interventions in Parkinson's disease?. NeuroReport, 2013, 24, 1005-1009.	1.2	1
268	Association of Optic Pathways and Brain Structure With Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson Disease Dementia—Reply. JAMA Neurology, 2018, 75, 896.	9.0	1
269	Reply: Pathophysiology of gait disorders induced by bilateral globus pallidus interna stimulation in dystonia. Brain, 2020, 143, e4-e4.	7.6	1
270	Not only loud but also intelligible. EClinicalMedicine, 2020, 24, 100456.	7.1	1

#	Article	IF	CITATIONS
271	A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism and Related Disorders, 2021, 87, 142-154.	2.2	1
272	"Realâ€Life―Remote Dystonia Assessment: Feasibility, Accuracy, and Practice Implications. Movement Disorders Clinical Practice, 2021, 8, 1269-1271.	1.5	1
273	The surgical anatomy of the pedunculopontine nucleus cannot be disputed, buried or exhumed. Acta Neurochirurgica, 2012, 154, 1531-1533.	1.7	0
274	TRACKING PARKINSON'S (THE PROBAND STUDY)–INTERIM REPORT FROM THE FIRST 1000 CASES. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, e2.70-e2.	1.9	0
275	Commentary. Movement Disorders, 2013, 28, 739-739.	3.9	0
276	PO088â€Nigral iron susceptibility in parkinson's disease: a longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A34.4-A35.	1.9	0
277	Seeing Through the FOG?. Movement Disorders, 2020, 35, 3-4.	3.9	0
278	Might it Be Possible to Assess Rigidity in PD Patients Remotely?. Movement Disorders Clinical Practice, 2021, 8, 489-490.	1.5	0
279	Reply to Comment on: Successful Treatment of Levodopa/Carbidopa Intestinal Gel Associated "Biphasicâ€Like―Dyskinesia with Pallidal Deep Brain Stimulation. Movement Disorders Clinical Practice, 2021, 8, 814-815.	1.5	0
280	Reply to: Subthalamic Nucleus Deep Brain Stimulation as Rescue Therapy for Levodopa Carbidopa Intestinal Gel–Associated Biphasic‣ike Dyskinesias. Movement Disorders Clinical Practice, 2021, 8, 1157-1158.	1.5	0
281	Quantifying Stridor associated with Parkinsonism and Deep Brain Stimulation―a case report. Movement Disorders Clinical Practice, 2022, 9, 91-94.	1.5	0
282	Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease: Valuable Programming Insights from Anecdotal Observations. Stereotactic and Functional Neurosurgery, 2020, 98, 62-64.	1.5	0