Mark J Carman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/754067/publications.pdf

Version: 2024-02-01

759233 580821 1,372 25 59 12 citations h-index g-index papers 67 67 67 937 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigating Deep Learning Based Breast Cancer Subtyping Using Pan-Cancer and Multi-Omic Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 121-134.	3.0	12
2	CDF Transform-and-Shift: An effective way to deal with datasets of inhomogeneous cluster densities. Pattern Recognition, 2021, 117, 107977.	8.1	10
3	A technical survey on statistical modelling and design methods for crowdsourcing quality control. Artificial Intelligence, 2020, 287, 103351.	5.8	18
4	Self-labeling methods for unsupervised transfer ranking. Information Sciences, 2020, 516, 293-315.	6.9	5
5	Lowest probability mass neighbour algorithms: relaxing the metric constraint in distance-based neighbourhood algorithms. Machine Learning, 2019, 108, 331-376.	5.4	10
6	OCR On-the-Go: Robust End-to-End Systems for Reading License Plates & Street Signs., 2019,,.		8
7	Sub-Word Embeddings for OCR Corrections in Highly Fusional Indic Languages. , 2019, , .		3
8	Automatic Sarcasm Detection. ACM Computing Surveys, 2018, 50, 1-22.	23.0	209
9	Criminal motivation on the dark web: A categorisation model for law enforcement. Digital Investigation, 2018, 24, 62-71.	3.2	46
10	Understanding the Phenomenon of Sarcasm. Cognitive Systems Monographs, 2018, , 33-57.	0.1	2
10	Understanding the Phenomenon of Sarcasm. Cognitive Systems Monographs, 2018, , 33-57. Sarcasm Detection Using Incongruity Within Target Text. Cognitive Systems Monographs, 2018, , 59-91.	0.1	2
11	Sarcasm Detection Using Incongruity Within Target Text. Cognitive Systems Monographs, 2018, , 59-91. Grouping points by shared subspaces for effective subspace clustering. Pattern Recognition, 2018, 83,	0.1	1
11 12	Sarcasm Detection Using Incongruity Within Target Text. Cognitive Systems Monographs, 2018, , 59-91. Grouping points by shared subspaces for effective subspace clustering. Pattern Recognition, 2018, 83, 230-244.	0.1	1 14
11 12 13	Sarcasm Detection Using Incongruity Within Target Text. Cognitive Systems Monographs, 2018, , 59-91. Grouping points by shared subspaces for effective subspace clustering. Pattern Recognition, 2018, 83, 230-244. SIR-Hawkes. , 2018, , . Laying foundations for effective machine learning in law enforcement. Majura – A labelling schema	0.1	1 14 53
11 12 13	Sarcasm Detection Using Incongruity Within Target Text. Cognitive Systems Monographs, 2018, , 59-91. Grouping points by shared subspaces for effective subspace clustering. Pattern Recognition, 2018, 83, 230-244. SIR-Hawkes. , 2018, , . Laying foundations for effective machine learning in law enforcement. Majura – A labelling schema for child exploitation materials. Digital Investigation, 2018, 26, 40-54. Expect the Unexpected: Harnessing Sentence Completion for Sarcasm Detection. Communications in	0.1 8.1 3.2	1 14 53 15
11 12 13 14	Sarcasm Detection Using Incongruity Within Target Text. Cognitive Systems Monographs, 2018, , 59-91. Grouping points by shared subspaces for effective subspace clustering. Pattern Recognition, 2018, 83, 230-244. SIR-Hawkes. , 2018, , . Laying foundations for effective machine learning in law enforcement. Majura – A labelling schema for child exploitation materials. Digital Investigation, 2018, 26, 40-54. Expect the Unexpected: Harnessing Sentence Completion for Sarcasm Detection. Communications in Computer and Information Science, 2018, , 275-287.	0.1 8.1 3.2	1 14 53 15

#	Article	IF	CITATIONS
19	Error Detection and Corrections in Indic OCR Using LSTMs., 2017,,.		12
20	A Framework for Document Specific Error Detection and Corrections in Indic OCR., 2017,,.		4
21	Efficient Benchmarking of NLP APIs using Multi-armed Bandits. , 2017, , .		1
22	Density-ratio based clustering for discovering clusters with varying densities. Pattern Recognition, 2016, 60, 983-997.	8.1	109
23	Overcoming Key Weaknesses of Distance-based Neighbourhood Methods using a Data Dependent Dissimilarity Measure. , 2016, , .		40
24	\$\$ext {ALR}^n\$\$ ALR n : accelerated higher-order logistic regression. Machine Learning, 2016, 104, 151-194.	5.4	10
25	Comparing Pointwise and Listwise Objective Functions for Random-Forest-Based Learning-to-Rank. ACM Transactions on Information Systems, 2016, 34, 1-38.	4.9	25
26	Beyond Clustering., 2016,,.		2
27	On the Effectiveness of Query Weighting for Adapting Rank Learners to New Unlabelled Collections. , 2016, , .		3
28	Are Word Embedding-based Features Useful for Sarcasm Detection?. , 2016, , .		102
29	Harnessing Sequence Labeling for Sarcasm Detection in Dialogue from TV Series `Friends'., 2016, , .		37
30	How Do Cultural Differences Impact the Quality of Sarcasm Annotation?: A Case Study of Indian Annotators and American Text. , 2016, , .		15
31	Monte-Carlo Filesystem Search – A crawl strategy forÂdigitalÂforensics. Digital Investigation, 2015, 13, 58-71.	3.2	8
32	Your Sentiment Precedes You: Using an author's historical tweets to predict sarcasm. , 2015, , .		65
33	A Computational Approach to Automatic Prediction of Drunk-Texting. , 2015, , .		5
34	Naive-Bayes Inspired Effective Pre-Conditioner for Speeding-Up Logistic Regression. , 2014, , .		13
35	Undersampling Techniques to Re-balance Training Data for Large Scale Learning-to-Rank. Lecture Notes in Computer Science, 2014, , 444-457.	1.3	6
36	Towards Risk-Aware Resource Selection. Lecture Notes in Computer Science, 2014, , 148-159.	1.3	0

#	Article	IF	CITATIONS
37	Building user profiles from topic models for personalised search. , 2013, , .		64
38	Aggregation Methods for Proximity-Based Opinion Retrieval. ACM Transactions on Information Systems, 2012, 30, 1-36.	4.9	17
39	Employing document dependency in blog search. Journal of the Association for Information Science and Technology, 2012, 63, 354-365.	2.6	2
40	Comparing Tweets and Tags for URLs. Lecture Notes in Computer Science, 2012, , 73-84.	1.3	3
41	A multi-collection latent topic model for federated search. Information Retrieval, 2011, 14, 390-412.	2.0	6
42	Bayesian latent variable models for collaborative item rating prediction. , 2011, , .		30
43	Improving social bookmark search using personalised latent variable language models. , 2011, , .		14
44	Proximity-based opinion retrieval. , 2010, , .		39
45	Towards query log based personalization using topic models. , 2010, , .		52
46	Ranking social bookmarks using topic models. , 2010, , .		5
47	Tripartite Hidden Topic Models for Personalised Tag Suggestion. Lecture Notes in Computer Science, 2010, , 432-443.	1.3	17
48	Statistics of Online User-Generated Short Documents. Lecture Notes in Computer Science, 2010, , $649-652$.	1.3	9
49	A statistical comparison of tag and query logs. , 2009, , .		26
50	Tag navigation., 2009,,.		11
51	Investigating Learning Approaches for Blog Post Opinion Retrieval. Lecture Notes in Computer Science, 2009, , 313-324.	1.3	14
52	Blog distillation using random walks. , 2009, , .		6
53	Exploiting Data Semantics to Discover, Extract, and Model Web Sources. , 2008, , .		1
54	Tag data and personalized information retrieval. , 2008, , .		21

#	Article	IF	CITATIONS
55	Towards personalized distributed information retrieval. , 2008, , .		2
56	A Request Language for Web-Services Based on Planning and Constraint Satisfaction. Lecture Notes in Computer Science, 2002, , 76-85.	1.3	36
57	Towards an Economy-Based Optimisation of File Access and Replication on a Data Grid., 0,,.		47
58	Planning for web services the hard way., 0,,.		4
59	Learning Semantic Definitions of Online Information Sources. Journal of Artificial Intelligence Research, 0, 30, 1-50.	7.0	18