
Hanwen Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/75400/publications.pdf Version: 2024-02-01

ΗΛΝΙΜΕΝ Μ/Π

#	Article	IF	CITATIONS
1	Resistance Mechanism to Metsulfuron-Methyl in Polypogon fugax. Plants, 2021, 10, 1309.	3.5	4
2	Metabolic profiling of benzoxazinoids in the roots and rhizosphere of commercial winter wheat genotypes. Plant and Soil, 2021, 466, 467-489.	3.7	15
3	The Remarkable Journey of a Weed: Biology and Management of Annual Ryegrass (Lolium rigidum) in Conservation Cropping Systems of Australia. Plants, 2021, 10, 1505.	3.5	9
4	Weed management in canola (<i>Brassica napus</i> L): a review of current constraints and future strategies for Australia. Archives of Agronomy and Soil Science, 2020, 66, 427-444.	2.6	16
5	A strategy of rapidly screening out herbicidal chemicals from <i>Eucalyptus</i> essential oils. Pest Management Science, 2020, 76, 917-927.	3.4	18
6	Germination and emergence characteristics of prickly lettuce (Lactuca serriola L.). Crop Protection, 2020, 136, 105222.	2.1	6
7	Emergence timing affects growth and reproduction of goosegrass (Eleusine indica). Weed Technology, 2019, 33, 833-839.	0.9	3
8	Seed Fecundity, Persistence, and Germination Biology of Prairie Groundcherry (<i>Physalis) Tj ETQq0 0 0 rgBT /O</i>)verlock 1(0 Tf 50 462 To

9	The weed suppressive ability of selected Australian grain crops; caseÂstudies from the Riverina region in New South Wales. Crop Protection, 2018, 103, 9-19.	2.1	17
10	Seed treatments alleviate dormancy of field bindweed (Convolvulus arvensisL.). Weed Technology, 2018, 32, 564-569.	0.9	9
11	Species Identification of Conyza bonariensis Assisted by Chloroplast Genome Sequencing. Frontiers in Genetics, 2018, 9, 374.	2.3	24
12	Agronomic interventions for weed management in canola (Brassica napus L.) – A review. Crop Protection, 2017, 95, 69-73.	2.1	17
13	Complete chloroplast genome of Chilean needle grass, <i>Nassella neesiana</i> (Poaceae: Stipeae). Mitochondrial DNA Part B: Resources, 2017, 2, 728-729.	0.4	0
14	Complete Chloroplast Genome Sequence of Cane Needle Grass, Nassella hyalina (Poaceae: Stipeae). Genome Announcements, 2017, 5, .	0.8	0
15	Evaluation of six candidate DNA barcode loci for identification of five important invasive grasses in eastern Australia. PLoS ONE, 2017, 12, e0175338.	2.5	14
16	Growth Analysis of Cotton in Competition with Velvetleaf (<i>Abutilon theophrasti</i>). Weed Technology, 2016, 30, 123-136.	0.9	15
17	Weed and insect control affected by mixing insecticides with glyphosate in cotton. Journal of Integrative Agriculture, 2016, 15, 373-380.	3.5	11
18	Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia. Environmental Science and Pollution Research, 2016, 23, 23175-23183.	5.3	15

HANWEN WU

#	Article	IF	CITATIONS
19	Herbicidal control of Solanum elaeagnifolium Cav. in Australia. Crop Protection, 2016, 88, 58-64.	2.1	15
20	Seeding rate and cultivar effects on canola (Brassica napus) competition with volunteer wheat (Triticum aestivum). Crop and Pasture Science, 2016, 67, 857.	1.5	11
21	A novel screening method for rice allelopathic potential: the inhibitoryâ€circle method. Weed Research, 2015, 55, 441-448.	1.7	14
22	Weed flora and seed yield in quinoa crop (<i>Chenopodium quinoa</i> Willd.) as affected by tillage systems and fertilization practices. International Journal of Pest Management, 2015, 61, 228-234.	1.8	11
23	Goosegrass (Eleusine indica) density effects on cotton (Gossypium hirsutum). Journal of Integrative Agriculture, 2015, 14, 1778-1785.	3.5	30
24	Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum) Tj ETQqO	0 0 rgBT /0 2.9	Overlock 10 1
25	Differential Frost Tolerance and Enzymatic Activities in the Leaves and Immature Fruits of Loquat (Eriobotrya japonica Lindl.). Horticultural Science and Technology, 2015, 33, 309-316.	0.6	1
26	Competitive ability of Australian canola (Brassica napus) genotypes for weed management. Crop and Pasture Science, 2014, 65, 1300.	1.5	37
27	Phytotoxic Activity and Chemical Composition of Aqueous Volatile Fractions from Eucalyptus Species. PLoS ONE, 2014, 9, e93189.	2.5	21
28	Changes in Cell Ca2+Distribution in Loquat Leaves and Its Effects on Cold Tolerance. Horticultural Science and Technology, 2014, 32, 607-613.	0.6	4
29	Morphological variation of <i><scp>S</scp>olanum elaeagnifolium</i> in southâ€eastern <scp>A</scp> ustralia. Weed Research, 2013, 53, 344-354.	1.7	9
30	Genetic variation and structure of <i><scp>S</scp>olanum elaeagnifolium</i> in <scp>A</scp> ustralia analysed by amplified fragment length polymorphism markers. Weed Research, 2013, 53, 337-343.	1.7	2
31	Intrusive trichome bases in the leaves of silverleaf nightshade (<i>Solanum elaeagnifolium</i> ;) Tj ETQq1 1 0.784 2307-2317.	1314 rgBT 1.7	/Overlock 10 21
32	Development of SSR Markers for Genetic Analysis of Silverleaf Nightshade (Solanum elaeagnifolium) and Related Species. Plant Molecular Biology Reporter, 2013, 31, 248-254.	1.8	20
33	Time of emergence impacts the growth and reproduction of silverleaf nightshade (<i>Solanum) Tj ETQq1 1 0.784</i>	4314 rgBT 1.4	/Qverlock 10
34	Factors Affecting Silverleaf Nightshade (<i>Solanum elaeagnifolium</i>) Germination. Weed Science, 2012, 60, 42-47.	1.5	31
35	Chemical composition of essential oils of four Eucalyptus species and their phytotoxicity on silverleaf nightshade (Solanum elaeagnifolium Cav.) in Australia. Plant Growth Regulation, 2012, 68, 231-237.	3.4	56
36	Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. Journal of Plant Physiology, 2012, 169, 1747-1753.	3.5	46

Hanwen Wu

#	Article	IF	CITATIONS
37	Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment. Applied Soil Ecology, 2012, 53, 49-55.	4.3	41
38	Dynamics of soil extractable carbon and nitrogen under different cover crop residues. Journal of Soils and Sediments, 2012, 12, 844-853.	3.0	28
39	Evaluation of simple sequence repeat (SSR) markers from <i>Solanum</i> crop species for <i>Solanum elaeagnifolium</i> . Weed Research, 2012, 52, 217-223.	1.7	16
40	The short-term cover crops increase soil labile organic carbon in southeastern Australia. Biology and Fertility of Soils, 2012, 48, 239-244.	4.3	22
41	Incidence of endophyte <i>Neotyphodium occultans</i> in <i>Lolium rigidum</i> from Australia. Weed Research, 2011, 51, 261-272.	1.7	12
42	Symbiotic nitrogen fixation and soil N availability under legume crops in an arid environment. Journal of Soils and Sediments, 2011, 11, 762-770.	3.0	26
43	Plants with phytotoxic potential: Wollemi pine (Wollemia nobilis). Agriculture, Ecosystems and Environment, 2010, 135, 52-57.	5.3	17
44	Competition of sorghum cultivars and densities with Japanese millet (<i>Echinochloa esculenta</i>). Weed Biology and Management, 2010, 10, 185-193.	1.4	24
45	Control of Flaxleaf Fleabane (Conyza bonariensis) in Wheat and Sorghum. Weed Technology, 2010, 24, 102-107.	0.9	20
46	Modelling tritrophic interactions mediated by induced defence volatiles. Ecological Modelling, 2009, 220, 3241-3247.	2.5	12
47	Lavender as a Source of Novel Plant Compounds for the Development of a Natural Herbicide. Journal of Chemical Ecology, 2009, 35, 1129-1136.	1.8	52
48	Cadmium accumulation in <i>Agaricusblazei</i> Murrill. Journal of the Science of Food and Agriculture, 2008, 88, 1369-1375.	3.5	9
49	Allelopathy from a Mathematical Modeling Perspective. , 2008, , 169-186.		1
50	Recent Advances in Wheat Allelopathy. , 2008, , 235-254.		6
51	Germination, persistence, and emergence of flaxleaf fleabane (<i>Conyza bonariensis</i> [L.]) Tj ETQq1 1 0.7843	314 rgBT / 1.4	Overlock 10
52	Autotoxicity of wheat (Triticum aestivum L.) as determined by laboratory bioassays. Plant and Soil, 2007, 296, 85-93.	3.7	76
53	Conditional genetic effect of allelopathy in rice (Oryza sativa L.) under different environmental conditions. Plant Growth Regulation, 2004, 44, 211-218.	3.4	20
54	Correlation between phytotoxicity on annual ryegirass (Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat. Journal of Chemical Ecology, 2003, 29, 2263-2279.	1.8	56

#	Article	IF	CITATIONS
55	Quantitative trait loci and molecular markers associated with wheat allelopathy. Theoretical and Applied Genetics, 2003, 107, 1477-1481.	3.6	62
56	Phytotoxic Effects of Wheat Extracts on a Herbicide-Resistant Biotype of Annual Ryegrass (Lolium) Tj ETQq0 0 0	rgBT_/Over 5.2	lock 10 Tf 50
57	Biochemical Basis for Wheat Seedling Allelopathy on the Suppression of Annual Ryegrass (Lolium) Tj ETQq1 1 0.7	784314 rgl 5.2	BT_/Overlock

58	Allelochemicals in Wheat (Triticum aestivumL.):Â Cultivar Difference in the Exudation of Phenolic Acids. Journal of Agricultural and Food Chemistry, 2001, 49, 3742-3745.	5.2	60
59	Allelochemicals in wheat (Triticum aestivum L.): production and exudation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. Journal of Chemical Ecology, 2001, 27, 1691-1700.	1.8	63
60	Allelochemicals in wheat (Triticum aestivum L.): variation of phenolic acids in shoot tissues. Journal of Chemical Ecology, 2001, 27, 125-135.	1.8	55
61	Allelopathy in wheat (Triticum aestivum). Annals of Applied Biology, 2001, 139, 1-9.	2.5	102
62	Distribution and Exudation of Allelochemicals in Wheat Triticum aestivum. Journal of Chemical Ecology, 2000, 26, 2141-2154.	1.8	81
63	Allelochemicals in Wheat (TriticumAestivumL.):Â Variation of Phenolic Acids in Root Tissues. Journal of Agricultural and Food Chemistry, 2000, 48, 5321-5325.	5.2	72
64	Simultaneous determination of phenolic acids and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one in wheat (Triticum aestivum L.) by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 1999, 864, 315-321.	3.7	65
65	Germination of Solanum nigrum L. (Black Nightshade) in Response to Different Abiotic Factors. Planta Daninha, 0, 38, .	0.5	4