
Suttira Intapad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7539962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sphingolipids and Kidney Disease: Possible Role of Preeclampsia and Intrauterine Growth Restriction (IUGR). Kidney360, 2021, 2, 534-541.	2.1	6
2	Macula Densa NOS1Î ² Modulates Renal Hemodynamics and Blood Pressure during Pregnancy: Role in Gestational Hypertension. Journal of the American Society of Nephrology: JASN, 2021, 32, 2485-2500.	6.1	8
3	Insights into the Mechanisms of Fetal Growth Restriction-Induced Programming of Hypertension. Integrated Blood Pressure Control, 2021, Volume 14, 141-152.	1.2	8
4	Sex Differences in Fetal Programming of Blood Pressure and Kidney Gene Expression of Intrauterine Growth Restricted Mouse Model. FASEB Journal, 2020, 34, 1-1.	0.5	0
5	Androgen Receptor Blockade Differentially Regulates Blood Pressure in Growth-Restricted Versus Ovarian Deficient Rats. Hypertension, 2019, 74, 975-982.	2.7	4
6	Sphingosine-1-phosphate signaling in blood pressure regulation. American Journal of Physiology - Renal Physiology, 2019, 317, F638-F640.	2.7	10
7	Male and Female Intrauterine Growth-Restricted Offspring Differ in Blood Pressure, Renal Function, and Glucose Homeostasis Responses to a Postnatal Diet High in Fat and Sugar. Hypertension, 2019, 73, 620-629.	2.7	21
8	Imbalance of Sphingolipids Synthesis/Degradation Pathway in Preeclamptic Mouse Placenta and Kidney of Intrauterine Growth Restricted Mouse Fetus. FASEB Journal, 2019, 33, 593.3.	0.5	4
9	Role of Sphingosine â€1â€Phosphate on Expression of MAPK and Akt Signaling Pathways in Hypoxic Human Extravillous Trophoblasts. FASEB Journal, 2018, 32, 729.1.	0.5	0
10	Sphingosineâ€1â€Phosphate Type 1 Receptor and eNOS Signaling Pathway Play a Role in High Blood Pressure of Intrauterine Growth Restricted Mouse. FASEB Journal, 2018, 32, 883.1.	0.5	0
11	Testosterone is protective against impaired glucose metabolism in male intrauterine growth-restricted offspring. PLoS ONE, 2017, 12, e0187843.	2.5	9
12	Chronic Blockade of the Androgen Receptor Abolishes Age-Dependent Increases in Blood Pressure in Female Growth-Restricted Rats. Hypertension, 2016, 67, 1281-1290.	2.7	21
13	Intrauterine growth restriction programs an accelerated age-related increase in cardiovascular risk in male offspring. American Journal of Physiology - Renal Physiology, 2016, 311, F312-F319.	2.7	19
14	Reprogramming Essential Hypertension. Hypertension, 2016, 67, 829-830.	2.7	1
15	Glucose intolerance develops prior to increased adiposity and accelerated cessation of estrous cyclicity in female growth-restricted rats. Pediatric Research, 2016, 79, 962-970.	2.3	18
16	Fetal Programming and Cardiovascular Pathology. , 2015, 5, 997-1025.		165
17	Sex-Specific Effect of Endothelin in the Blood Pressure Response to Acute Angiotensin II in Growth-Restricted Rats. Hypertension, 2015, 66, 1260-1266.	2.7	12
18	Intrauterine Growth Restriction (IUGR) Induced by Reduced Uterine Perfusion in The Mouse Programs Impaired Glucose Homeostasis in Female Offspring. FASEB Journal, 2015, 29, 811.21.	0.5	0

SUTTIRA INTAPAD

#	Article	IF	CITATIONS
19	Impact of Commercial Vendor on The Developmental Programming of Later Chronic Health. FASEB Journal, 2015, 29, 811.20.	0.5	0
20	Impact of Chronic Salt Load on Mean Arterial Pressure in Female Growth Restricted Rats at One Year of Age. FASEB Journal, 2015, 29, 966.8.	0.5	0
21	Postmenopausal Hypertension Is Blunted Following Chronic Flutamide Treatment in Intrauterine Growth Restricted Female Rat. FASEB Journal, 2015, 29, 966.2.	0.5	0
22	Reduced uterine perfusion pressure induces hypertension in the pregnant mouse. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1353-R1357.	1.8	53
23	Sex Differences in the Developmental Origins of Cardiovascular Disease. Physiology, 2014, 29, 122-132.	3.1	62
24	Effect of Low Birth Weight on Women's Health. Clinical Therapeutics, 2014, 36, 1913-1923.	2.5	50
25	Pregnancy Complications and Later Development of Hypertension. Current Cardiovascular Risk Reports, 2013, 7, 183-189.	2.0	14
26	Renal Denervation Abolishes the Age-Dependent Increase in Blood Pressure in Female Intrauterine Growth-Restricted Rats at 12 Months of Age. Hypertension, 2013, 61, 828-834.	2.7	83
27	Future Cardiovascular Risk. Circulation, 2013, 127, 668-669.	1.6	8
28	Renal denervation abolishes ageâ€dependent hypertension in female intrauterine growth restricted rats FASEB Journal, 2013, 27, 906.17.	0.5	0
29	Impaired pancreatic function contributes to the ageâ€dependent development of metabolic syndrome in female intrauterine growth restricted rats FASEB Journal, 2013, 27, 1114.8.	0.5	0
30	Fetal exposure to high levels of corticosterone in a low birth weight rat model. FASEB Journal, 2013, 27, lb890.	0.5	0
31	A study of plasma corticosterone levels in an intrauterine growth restricted rat model at prenatal E19 and postnatal P14. FASEB Journal, 2013, 27, lb895.	0.5	0
32	Long-Term Effect of Phytoestrogens from Curcuma comosa Roxb. on Vascular Relaxation in Ovariectomized Rats. Journal of Agricultural and Food Chemistry, 2012, 60, 758-764.	5.2	16
33	Intrauterine growth restriction induces a greater susceptibility to hypertension and metabolic dysfunction with aging in female growthâ€restricted rats. FASEB Journal, 2012, 26, 1101.4.	0.5	0
34	Hypersensitivity to acute ANG II in female growth-restricted offspring is exacerbated by ovariectomy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1199-R1205.	1.8	32
35	Enhancement of vascular relaxation in rat aorta by phytoestrogens from Curcuma comosa Roxb. Vascular Pharmacology, 2009, 51, 284-290.	2.1	18