Ravi N Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7539895/publications.pdf

Version: 2024-02-01

79 6,515 35 70 papers citations h-index g-index

81 81 81 8833
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Exosomal miR-4466 from nicotine-activated neutrophils promotes tumor cell stemness and metabolism in lung cancer metastasis. Oncogene, 2022, 41, 3079-3092.	5.9	32
2	Breast cancer extracellular vesicles-derived miR-1290 activates astrocytes in the brain metastatic microenvironment via the FOXA2â†'CNTF axis to promote progression of brain metastases. Cancer Letters, 2022, 540, 215726.	7.2	24
3	Metal-Based Nanostructured Therapeutic Strategies for Glioblastoma Treatment—An Update. Biomedicines, 2022, 10, 1598.	3.2	6
4	Regucalcin promotes dormancy of prostate cancer. Oncogene, 2021, 40, 1012-1026.	5. 9	18
5	Brain cell-derived exosomes in plasma serve as neurodegeneration biomarkers in male cynomolgus monkeys self-administrating oxycodone. EBioMedicine, 2021, 63, 103192.	6.1	38
6	Integrated Redox Proteomic Analysis Highlights New Mechanisms of Sensitivity to Silver Nanoparticles. Molecular and Cellular Proteomics, 2021, 20, 100073.	3.8	15
7	Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing. Journal of Extracellular Vesicles, 2021, 10, e12076.	12.2	102
8	Low Doses of Silver Nanoparticles Selectively Induce Lipid Peroxidation and Proteotoxic Stress in Mesenchymal Subtypes of Triple-Negative Breast Cancer. Cancers, 2021, 13, 4217.	3.7	7
9	Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nature Communications, 2021, 12, 5196.	12.8	74
10	Semiconducting polymer nanoparticles for photothermal ablation of colorectal cancer organoids. Scientific Reports, 2021, 11, 1532.	3.3	15
11	Oxaliplatin-resistant colorectal cancer models for nanoparticle hyperthermia. International Journal of Hyperthermia, 2021, 38, 152-164.	2.5	2
12	Combined Photothermal and Ionizing Radiation Sensitization of Triple-Negative Breast Cancer Using Triangular Silver Nanoparticles. International Journal of Nanomedicine, 2021, Volume 16, 851-865.	6.7	23
13	The mechanism of cell death induced by silver nanoparticles is distinct from silver cations. Particle and Fibre Toxicology, 2021, 18, 37.	6.2	45
14	Syntaxin 6â€mediated exosome secretion regulates enzalutamide resistance in prostate cancer. Molecular Carcinogenesis, 2020, 59, 62-72.	2.7	41
15	Silver nanoparticles selectively treat tripleâ€negative breast cancer cells without affecting nonâ€malignant breast epithelial cells in vitro and in vivo. FASEB BioAdvances, 2019, 1, 639-660.	2.4	59
16	Silver Nanoparticles Induce Mitochondrial Protein Oxidation in Lung Cells Impacting Cell Cycle and Proliferation. Antioxidants, 2019, 8, 552.	5.1	45
17	Exosome proteomic analyses identify inflammatory phenotype and novel biomarkers in African American prostate cancer patients. Cancer Medicine, 2019, 8, 1110-1123.	2.8	69
18	Abstract 434: Breast cancer bone metastasis mediated by the exosomal miR-19a and secreted IBSP. , 2019, , .		0

#	Article	IF	Citations
19	Abstract 887: Silver nanoparticles and ionizing radiation induce mitochondrial protein oxidation and effects on cell cycle and proliferation in lung cancer cell lines. Cancer Research, 2019, 79, 887-887.	0.9	1
20	Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells. Scientific Reports, 2018, 8, 3853.	3.3	84
21	Exosomes secreted by placental stem cells selectively inhibit growth of aggressive prostate cancer cells. Biochemical and Biophysical Research Communications, 2018, 499, 1004-1010.	2.1	27
22	Mitochondria-targeted Probes for Imaging Protein Sulfenylation. Scientific Reports, 2018, 8, 6635.	3.3	28
23	Large-Scale Preparation of Extracellular Vesicles Enriched with Specific microRNA. Tissue Engineering - Part C: Methods, 2018, 24, 637-644.	2.1	22
24	P-Glycoprotein-Targeted Photothermal Therapy of Drug-Resistant Cancer Cells Using Antibody-Conjugated Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33464-33473.	8.0	60
25	Synthesis, Purification, Characterization, and Imaging of Cy3-Functionalized Fluorescent Silver Nanoparticles in 2D and 3D Tumor Models. Methods in Molecular Biology, 2018, 1790, 209-218.	0.9	6
26	Loss of XIST in Breast Cancer Activates MSN-c-Met and Reprograms Microglia via Exosomal miRNA to Promote Brain Metastasis. Cancer Research, 2018, 78, 4316-4330.	0.9	233
27	Abstract B123: A mesenchymal subset of cancers with elevated ZEB1 expression is sensitive to low doses of silver nanoparticles. , 2018 , , .		0
28	MP81-14 EXOSOMES SECRETED BY PLACENTAL STEM CELLS SELECTIVELY INHIBIT GROWTH OF PROSTATE CANCER CELLS. Journal of Urology, 2018, 199, .	0.4	0
29	Largeâ€Pore Functionalized Mesoporous Silica Nanoparticles as Drug Delivery Vector for a Highly Cytotoxic Hybrid Platinum–Acridine Anticancer Agent. Chemistry - A European Journal, 2017, 23, 3386-3397.	3.3	21
30	Evaluation of multiwalled carbon nanotube cytotoxicity in cultures of human brain microvascular endothelial cells grown on plastic or basement membrane. Toxicology in Vitro, 2017, 41, 223-231.	2.4	17
31	4-11C-Methoxy N-(2-Diethylaminoethyl) Benzamide: A Novel Probe to Selectively Target Melanoma. Journal of Nuclear Medicine, 2017, 58, 827-832.	5.0	13
32	Heterogeneous Responses of Ovarian Cancer Cells to Silver Nanoparticles as a Single Agent and in Combination with Cisplatin. Journal of Nanomaterials, 2017, 2017, 1-11.	2.7	37
33	MEX3C interacts with adaptor-related protein complex 2 and involves in miR-451a exosomal sorting. PLoS ONE, 2017, 12, e0185992.	2.5	50
34	Abstract B37: Photothermal therapy of glioblastoma multiforme using multiwalled carbon nanotubes optimized for diffusion in extracellular space. , 2017 , , .		0
35	Abstract B47: Silver nanoparticles exhibit subtype specific cytotoxic and therapeutic effects in claudin low breast cancer in vitro and in vivo. , 2017, , .		0
36	Abstract 1338: Exosome secretion promotes proliferation of African American prostate cancer cells under hypoxia: Role of HIF2A and RAB signaling. , 2017, , .		0

#	Article	IF	CITATIONS
37	Abstract 3187: Role of exosome secretion in the survival of enzalutamide-resistant prostate cancer cells: Syntaxin 6 as a novel therapeutic target., 2017 ,,.		O
38	Liposome-Protamine-DNA Nanoparticle-Mediated Delivery of Short Hairpin RNA Targeting Brachyury Inhibits Chordoma Cell Growth. Journal of Biomedical Nanotechnology, 2016, 12, 1952-1961.	1.1	9
39	Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn ²⁺ chelator TPEN inducing oxidative stress in prostate cancer cells. Nanomedicine, 2016, 11, 1207-1222.	3.3	33
40	Photothermal Therapy of Glioblastoma Multiforme Using Multiwalled Carbon Nanotubes Optimized for Diffusion in Extracellular Space. ACS Biomaterials Science and Engineering, 2016, 2, 963-976.	5. 2	70
41	Design and cellular studies of a carbon nanotube-based delivery system for a hybrid platinum-acridine anticancer agent. Journal of Inorganic Biochemistry, 2016, 165, 170-180.	3 . 5	15
42	Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells. International Journal of Nanomedicine, 2015, 10, 3937.	6.7	81
43	Pharmacokinetic Evaluation of Avicularin Using a Model-Based Development Approach. Planta Medica, 2015, 81, 373-381.	1.3	8
44	Targeting breast cancer with sugar-coated carbon nanotubes. Nanomedicine, 2015, 10, 2481-2497.	3.3	35
45	Carbon nanotubes in hyperthermia therapy. Advanced Drug Delivery Reviews, 2013, 65, 2045-2060.	13.7	194
46	Nanoparticles for cancer imaging: The good, the bad, and the promise. Nano Today, 2013, 8, 454-460.	11.9	140
47	Improved Local and Systemic Anti-Tumor Efficacy for Irreversible Electroporation in Immunocompetent versus Immunodeficient Mice. PLoS ONE, 2013, 8, e64559.	2.5	73
48	Abstract B063: Tumor targeting and diagnostic applications of glycosylated nanotubes. , 2013, , .		0
49	Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers. Physics in Medicine and Biology, 2012, 57, 5765-5775.	3.0	11
50	The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials, 2012, 33, 2961-2970.	11.4	190
51	Targeting Cancer Stem Cells with Nanoparticle-Enabled Therapies. Journal of Molecular Biomarkers & Diagnosis, 2012, Suppl 8, .	0.4	10
52	Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials, 2011, 32, 5970-5978.	11.4	68
53	Development of iron-containing multiwalled carbon nanotubes for MR-guided laser-induced thermotherapy. Nanomedicine, 2011, 6, 1341-1352.	3.3	38
54	Computational Models and Digital Image Analysis of Carbon Nanotube Mediated Laser Cancer Therapy. , 2011, , .		0

#	Article	IF	CITATIONS
55	Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Research and Treatment, 2010, 123, 295-301.	2.5	101
56	Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12897-12902.	7.1	308
57	Designer adenoviruses for nanomedicine and nanodiagnostics. Trends in Biotechnology, 2009, 27, 220-229.	9.3	83
58	Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Medicinal Chemistry, 2009, 1, 1643-1670.	2.3	185
59	Feasibility Study for Applying Irreversible Electroporation to the Treatment of Breast Cancer. , 2009, , .		0
60	Dynamic Imaging of Functionalized Multiâ€Walled Carbon Nanotube Systemic Circulation and Urinary Excretion. Advanced Materials, 2008, 20, 225-230.	21.0	196
61	Nanoengineering Artificial Lipid Envelopes Around Adenovirus by Self-Assembly. ACS Nano, 2008, 2, 1040-1050.	14.6	53
62	Artificial envelopment of nonenveloped viruses: enhancing adenovirus tumor targeting <i>in vivo</i> FASEB Journal, 2008, 22, 3389-3402.	0.5	45
63	Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3357-3362.	7.1	995
64	Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes:Â Toward the Construction of Nanotube-Based Gene Delivery Vectors. Journal of the American Chemical Society, 2005, 127, 4388-4396.	13.7	726
65	Surface modification of adenovirus by zwitterionic (DMPC:Chol) liposomes can up- or down-regulate adenoviral gene transfer efficiency in vitro. Journal of Drug Delivery Science and Technology, 2005, 15, 289-294.	3.0	2
66	Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. Angewandte Chemie - International Edition, 2004, 43, 5242-5246.	13.8	977
67	Protection against Pulmonary Infection with Pseudomonas aeruginosa following Immunization with P. aeruginosa-Pulsed Dendritic Cells. Infection and Immunity, 2001, 69, 4521-4527.	2.2	43
68	Dendritic cells genetically modified to express CD40 ligand and pulsed with antigen can initiate antigen-specific humoral immunity independent of CD4+ T cells. Nature Medicine, 2000, 6, 1154-1159.	30.7	81
69	Free Cholesterol Enhances Adenoviral Vector Gene Transfer and Expression in CAR-Deficient Cells. Molecular Therapy, 2000, 1, 39-48.	8.2	38
70	Lung Overexpression of the Vascular Endothelial Growth Factor Gene Induces Pulmonary Edema. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 657-664.	2.9	260
71	Selective Expansion of Alveolar Macrophages In Vivo by Adenovirus-Mediated Transfer of the Murine Granulocyte-Macrophage Colony-Stimulating Factor cDNA. Blood, 1999, 93, 655-666.	1.4	44
72	Modification of the Genetic Program of Human Alveolar Macrophages by Adenovirus Vectors <i>In Vitro</i> Is Feasible but Inefficient, Limited in Part by the Low Level of Expression of the Coxsackie/Adenovirus Receptor. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 361-370.	2.9	78

#	Article	IF	CITATION
73	Augmentation of pulmonary host defense against Pseudomonas by FcγRIIA cDNA transfer to the respiratory epithelium. Journal of Clinical Investigation, 1999, 104, 409-418.	8.2	6
74	Selective Expansion of Alveolar Macrophages In Vivo by Adenovirus-Mediated Transfer of the Murine Granulocyte-Macrophage Colony-Stimulating Factor cDNA. Blood, 1999, 93, 655-666.	1.4	6
75	Pharmacological expression in rat hepatocytes of a gene transferred by an adenovirus vector enabled by a chimeric promoter containing multiple cyclic adenosine monophosphate response elements. Hepatology, 1998, 27, 160-165.	7.3	8
76	Similarity of Strain- and Route-Dependent Murine Responses to an Adenovirus Vector Using the Homologous Thrombopoietin cDNA as the Reporter Genes. Human Gene Therapy, 1998, 9, 1223-1231.	2.7	25
77	Ability of a chimeric cAMP-responsive promoter to confer pharmacologic control of CFTR cDNA expression and cAMP-mediated Clâ° secretion. Gene Therapy, 1997, 4, 1195-1201.	4.5	9
78	Augmentation of blood platelet levels by intratracheal administration of an adenovirus vector encoding human thrombopoietin cDNA. Nature Biotechnology, 1997, 15, 570-573.	17.5	22
79	Regulatable Promoters for Use in Gene Therapy Applications: Modification of the 5′-Flanking Region of the CFTR Gene with Multiple cAMP Response Elements to Support Basal, Low-Level Gene Expression That Can Be Upregulated by Exogenous Agents That Raise Intracellular Levels of cAMP. Human Gene Therapy, 1996, 7, 1883-1893.	2.7	30