
Rachel J Perry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7539226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature, 2016, 534, 213-217.	27.8	990
2	The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature, 2014, 510, 84-91.	27.8	898
3	Hepatic Acetyl CoA Links Adipose Tissue Inflammation to Hepatic Insulin Resistance and Type 2 Diabetes. Cell, 2015, 160, 745-758.	28.9	547
4	Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science, 2015, 347, 1253-1256.	12.6	229
5	Regulation of adipose tissue inflammation by interleukin 6. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2751-2760.	7.1	216
6	Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nature Medicine, 2018, 24, 1384-1394.	30.7	200
7	Reversal of Hypertriglyceridemia, Fatty Liver Disease, and Insulin Resistance by a Liver-Targeted Mitochondrial Uncoupler. Cell Metabolism, 2013, 18, 740-748.	16.2	190
8	Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nature Medicine, 2014, 20, 759-763.	30.7	178
9	Acetylâ€CoA Carboxylase Inhibition Reverses NAFLD and Hepatic Insulin Resistance but Promotes Hypertriglyceridemia in Rodents. Hepatology, 2018, 68, 2197-2211.	7.3	172
10	Selective Chemical Inhibition of PGC-1α Gluconeogenic Activity Ameliorates Type 2 Diabetes. Cell, 2017, 169, 148-160.e15.	28.9	153
11	Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1189-1194.	7.1	143
12	Leptin Mediates a Glucose-Fatty Acid Cycle to Maintain Glucose Homeostasis in Starvation. Cell, 2018, 172, 234-248.e17.	28.9	125
13	Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature, 2020, 579, 279-283.	27.8	110
14	FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic–pituitary–adrenal axis. Nature Communications, 2015, 6, 6980.	12.8	106
15	Adolescent Obesity and Insulin Resistance: Roles of Ectopic Fat Accumulation and Adipose Inflammation. Gastroenterology, 2017, 152, 1638-1646.	1.3	105
16	Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport. Cell Reports, 2017, 21, 1021-1035.	6.4	103
17	Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nature Medicine, 2019, 25, 1739-1747.	30.7	100
18	Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32584-32593.	7.1	82

RACHEL J PERRY

#	Article	IF	CITATIONS
19	Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy. Nature Medicine, 2014, 20, 98-102.	30.7	80
20	Dehydration and insulinopenia are necessary and sufficient forÂeuglycemic ketoacidosis in SGLT2 inhibitor-treated rats. Nature Communications, 2019, 10, 548.	12.8	73
21	Mechanisms by which a Very-Low-Calorie Diet Reverses Hyperglycemia in a Rat Model of Type 2 Diabetes. Cell Metabolism, 2018, 27, 210-217.e3.	16.2	71
22	IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature, 2021, 600, 314-318.	27.8	70
23	Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. Journal of Experimental Medicine, 2021, 218, .	8.5	66
24	Leptin's hunger-suppressing effects are mediated by the hypothalamic–pituitary–adrenocortical axis in rodents. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13670-13679.	7.1	64
25	SGLT2 inhibition slows tumor growth in mice by reversing hyperinsulinemia. Cancer & Metabolism, 2019, 7, 10.	5.0	63
26	Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism. Journal of Biological Chemistry, 2016, 291, 12161-12170.	3.4	58
27	Emerging Pharmacological Targets for the Treatment of Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Type 2 Diabetes. Annual Review of Pharmacology and Toxicology, 2019, 59, 65-87.	9.4	58
28	Mechanism for leptin's acute insulin-independent effect to reverse diabetic ketoacidosis. Journal of Clinical Investigation, 2017, 127, 657-669.	8.2	58
29	Sodium-glucose cotransporter-2 inhibitors: Understanding the mechanisms for therapeutic promise and persisting risks. Journal of Biological Chemistry, 2020, 295, 14379-14390.	3.4	54
30	Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9172-E9180.	7.1	52
31	Metabolic control analysis of hepatic glycogen synthesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8166-8176.	7.1	51
32	Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16508-16513.	7.1	50
33	Uncoupling Hepatic Oxidative Phosphorylation Reduces Tumor Growth in Two Murine Models of Colon Cancer. Cell Reports, 2018, 24, 47-55.	6.4	48
34	A MicroRNA Linking Human Positive Selection and Metabolic Disorders. Cell, 2020, 183, 684-701.e14.	28.9	46
35	Non-invasive assessment of hepatic mitochondrial metabolism by positional isotopomer NMR tracer analysis (PINTA). Nature Communications, 2017, 8, 798.	12.8	45
36	Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates. Science Translational Medicine, 2019, 11, .	12.4	44

RACHEL J PERRY

#	Article	IF	CITATIONS
37	Mechanistic Links between Obesity, Insulin, and Cancer. Trends in Cancer, 2020, 6, 75-78.	7.4	44
38	Imeglimin lowers glucose primarily by amplifying glucose-stimulated insulin secretion in high-fat-fed rodents. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E461-E470.	3.5	42
39	OGT suppresses S6K1-mediated macrophage inflammation and metabolic disturbance. Proceedings of the United States of America, 2020, 117, 16616-16625.	7.1	42
40	Diabetes medications and risk of HCC. Hepatology, 2022, 76, 1880-1897.	7.3	39
41	The Mammalian INDY Homolog Is Induced by CREB in a Rat Model of Type 2 Diabetes. Diabetes, 2014, 63, 1048-1057.	0.6	38
42	A controlledâ€ r elease mitochondrial protonophore reverses hypertriglyceridemia, nonalcoholic steatohepatitis, and diabetes in lipodystrophic mice. FASEB Journal, 2017, 31, 2916-2924.	0.5	35
43	Prevention of diet-induced hepatic steatosis and hepatic insulin resistance by second generation antisense oligonucleotides targeted to the longevity gene mIndy (Slc13a5). Aging, 2015, 7, 1086-1093.	3.1	34
44	A Non-invasive Method to Assess Hepatic Acetyl-CoA InÂVivo. Cell Metabolism, 2017, 25, 749-756.	16.2	30
45	Pleotropic effects of leptin to reverse insulin resistance and diabetic ketoacidosis. Diabetologia, 2016, 59, 933-937.	6.3	29
46	Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. Journal of Clinical Investigation, 2022, 132, .	8.2	28
47	Dissociation of Muscle Insulin Resistance from Alterations in Mitochondrial Substrate Preference. Cell Metabolism, 2020, 32, 726-735.e5.	16.2	27
48	A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21. Genes and Development, 2021, 35, 133-146.	5.9	26
49	Leptin mediates postprandial increases in body temperature through hypothalamus–adrenal medulla–adipose tissue crosstalk. Journal of Clinical Investigation, 2020, 130, 2001-2016.	8.2	25
50	Obesity-associated, but not obesity-independent, tumors respond to insulin by increasing mitochondrial glucose oxidation. PLoS ONE, 2019, 14, e0218126.	2.5	24
51	3,5 Diiodo-L-Thyronine (T2) Does Not Prevent Hepatic Steatosis or Insulin Resistance in Fat-Fed Sprague Dawley Rats. PLoS ONE, 2015, 10, e0140837.	2.5	23
52	Insulin and cancer: a tangled web. Biochemical Journal, 2022, 479, 583-607.	3.7	22
53	Adipocyte JAK2 Regulates Hepatic Insulin Sensitivity Independently of Body Composition, Liver Lipid Content, and Hepatic Insulin Signaling. Diabetes, 2018, 67, 208-221.	0.6	19
54	Patient preferences using telehealth during the <scp>COVID</scp> â€19 pandemic in four Victorian tertiary hospital services. Internal Medicine Journal, 2022, 52, 763-769.	0.8	16

RACHEL J PERRY

#	Article	IF	CITATIONS
55	Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol – PKCε – insulin receptorT1160 phosphorylation. JCl Insight, 2021, 6, .	5.0	13
56	Imeglimin: Current Development and Future Potential in Type 2 Diabetes. Drugs, 2021, 81, 185-190.	10.9	11
57	Multimodal analysis suggests differential immuno-metabolic crosstalk in lung squamous cell carcinoma and adenocarcinoma. Npj Precision Oncology, 2022, 6, 8.	5.4	10
58	The Role of Leptin in Maintaining Plasma Glucose During Starvation. Postdoc Journal, 2018, 6, 3-19.	0.4	9
59	The Impact of Obesity on Tumor Glucose Uptake in Breast and Lung Cancer. JNCI Cancer Spectrum, 2020, 4, pkaa007.	2.9	9
60	A precision medicine approach to metabolic therapy for breast cancer in mice. Communications Biology, 2022, 5, .	4.4	9
61	Response to Burgess. Nature Medicine, 2015, 21, 109-110.	30.7	8
62	<i>In vivo</i> studies on the mechanism of methylene cyclopropyl acetic acid and methylene cyclopropyl glycine-induced hypoglycemia. Biochemical Journal, 2018, 475, 1063-1074.	3.7	8
63	Leptin revisited: The role of leptin in starvation. Molecular and Cellular Oncology, 2018, 5, e1435185.	0.7	6
64	Current mechanisms in obesity and tumor progression. Current Opinion in Clinical Nutrition and Metabolic Care, 2020, 23, 395-403.	2.5	6
65	Deletion of the diabetes candidate gene Slc16a13 in mice attenuates diet-induced ectopic lipid accumulation and insulin resistance. Communications Biology, 2021, 4, 826.	4.4	6
66	Treating fatty liver and insulin resistance. Aging, 2013, 5, 791-792.	3.1	6
67	An optimized method for tissue glycogen quantification. Physiological Reports, 2022, 10, e15195.	1.7	6
68	Novel Strategies to Treat Hepatic Steatosis and Steatohepatitis. Obesity, 2019, 27, 1385-1387.	3.0	4
69	Comprehensive Analysis of Metabolic Isozyme Targets in Cancer. Cancer Research, 2022, 82, 1698-1711.	0.9	4
70	Pleotropic Acute and Chronic Effects of Leptin to Reverse Type 1 Diabetes. Postdoc Journal, 2017, 5, 3-11.	0.4	2
71	Regulation of Hepatic Lipid and Glucose Metabolism by INSP3R1. Diabetes, 0, , .	0.6	2