Christopher M Counter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7538992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct responses to rare codons in select Drosophila tissues. ELife, 2022, 11, .	6.0	11
2	Non-canonical genomic driver mutations of urethane carcinogenesis. PLoS ONE, 2022, 17, e0267147.	2.5	0
3	Using BioID to Characterize the RAS Interactome. Methods in Molecular Biology, 2021, 2262, 271-280.	0.9	2
4	Signaling levels mold the RAS mutation tropism of urethane. ELife, 2021, 10, .	6.0	10
5	Oncogenic KRAS is dependent upon an EFR3A-PI4KA signaling axis for potent tumorigenic activity. Nature Communications, 2021, 12, 5248.	12.8	24
6	CHK1 protects oncogenic KRAS-expressing cells from DNA damage and is a target for pancreatic cancer treatment. Cell Reports, 2021, 37, 110060.	6.4	14
7	Capturing the primordial Kras mutation initiating urethane carcinogenesis. Nature Communications, 2020, 11, 1800.	12.8	25
8	Expression of transgenes enriched in rare codons is enhanced by the MAPK pathway. Scientific Reports, 2020, 10, 22166.	3.3	11
9	Exploiting codon usage identifies intensity-specific modifiers of Ras/MAPK signaling in vivo. PLoS Genetics, 2020, 16, e1009228.	3.5	7
10	A model for RAS mutation patterns in cancers: finding the sweet spot. Nature Reviews Cancer, 2018, 18, 767-777.	28.4	266
11	Interrogating the protein interactomes of RAS isoforms identifies PIP5K1A as a KRAS-specific vulnerability. Nature Communications, 2018, 9, 3646.	12.8	56
12	Copper Chelation as Targeted Therapy in a Mouse Model of Oncogenic BRAF-Driven Papillary Thyroid Cancer. Clinical Cancer Research, 2018, 24, 4271-4281.	7.0	45
13	Wild-type Kras expands and exhausts hematopoietic stem cells. JCI Insight, 2018, 3, .	5.0	13
14	Wnt signaling suppresses MAPK-driven proliferation of intestinal stem cells. Journal of Clinical Investigation, 2018, 128, 3806-3812.	8.2	73
15	Codon bias imposes a targetable limitation on KRAS-driven therapeutic resistance. Nature Communications, 2017, 8, 15617.	12.8	38
16	Copper Chelation Inhibits BRAFV600E-Driven Melanomagenesis and Counters Resistance to BRAFV600E and MEK1/2 Inhibitors. Cancer Research, 2017, 77, 6240-6252.	0.9	98
17	A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution. Cell Reports, 2017, 20, 999-1015.	6.4	77
18	lsoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE, 2016, 11, e0167205.	2.5	5

Christopher M Counter

#	Article	IF	CITATIONS
19	A Genetic Porcine Model of Cancer. PLoS ONE, 2015, 10, e0128864.	2.5	128
20	Erk2 Phosphorylation of Drp1 Promotes Mitochondrial Fission and MAPK-Driven Tumor Growth. Molecular Cell, 2015, 57, 537-551.	9.7	509
21	Rare codons capacitate Kras-driven de novo tumorigenesis. Journal of Clinical Investigation, 2015, 125, 222-233.	8.2	71
22	Reduced HRASG12V-Driven Tumorigenesis of Cell Lines Expressing KRASC118S. PLoS ONE, 2015, 10, e0123918.	2.5	8
23	Wild-Type Hras Suppresses the Earliest Stages of Tumorigenesis in a Genetically Engineered Mouse Model of Pancreatic Cancer. PLoS ONE, 2015, 10, e0140253.	2.5	12
24	Decreased tumorigenesis in mice with a Kras point mutation at C118. Nature Communications, 2014, 5, 5410.	12.8	17
25	Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 2014, 509, 492-496.	27.8	425
26	Rare Codons Regulate KRas Oncogenesis. Current Biology, 2013, 23, 70-75.	3.9	132
27	Cell Cycle Regulated Phosphorylation of the Telomere-Associated Protein TIN2. PLoS ONE, 2013, 8, e71697.	2.5	4
28	Targeting eNOS in Pancreatic Cancer. Cancer Research, 2012, 72, 4472-4482.	0.9	54
29	A Novel Role for Copper in Ras/Mitogen-Activated Protein Kinase Signaling. Molecular and Cellular Biology, 2012, 32, 1284-1295.	2.3	226
30	PinX1 Localizes to Telomeres and Stabilizes TRF1 at Mitosis. Molecular and Cellular Biology, 2012, 32, 1387-1395.	2.3	18
31	Snm1B Interacts with PSF2. PLoS ONE, 2012, 7, e49626.	2.5	1
32	RALA and RALBP1 regulate mitochondrial fission atÂmitosis. Nature Cell Biology, 2011, 13, 1108-1115.	10.3	327
33	Breaking up is hard to do. Small GTPases, 2011, 2, 329-333.	1.6	10
34	Utility of Telomerase-pot1 Fusion Protein in Vascular Tissue Engineering. Cell Transplantation, 2010, 19, 79-87.	2.5	2
35	Sec5 and Exo84 Foster Oncogenic Ras-Mediated Tumorigenesis. Molecular Cancer Research, 2010, 8, 223-231.	3.4	34
36	cPLA2 Regulates the Expression of Type I Interferons and Intracellular Immunity to Chlamydia trachomatis. Journal of Biological Chemistry, 2010, 285, 21625-21635.	3.4	37

#	Article	IF	CITATIONS
37	Aurora-A Phosphorylates, Activates, and Relocalizes the Small GTPase RalA. Molecular and Cellular Biology, 2010, 30, 508-523.	2.3	100
38	A Role for eNOS in Oncogenic Ras-Driven Cancer. , 2010, , 23-38.		1
39	POT1 Association with TRF2 Regulates Telomere Length. Molecular and Cellular Biology, 2009, 29, 5611-5619.	2.3	27
40	ELR+ CXC chemokines and oncogenic Ras-mediated tumorigenesis. Carcinogenesis, 2009, 30, 1841-1847.	2.8	31
41	Tumour maintenance is mediated by eNOS. Nature, 2008, 452, 646-649.	27.8	289
42	The Protein hSnm1B Is Stabilized When Bound to the Telomere-binding Protein TRF2. Journal of Biological Chemistry, 2008, 283, 23671-23676.	3.4	14
43	The Cytoplasmic Deacetylase HDAC6 Is Required for Efficient Oncogenic Tumorigenesis. Cancer Research, 2008, 68, 7561-7569.	0.9	234
44	Tethering Telomeric Double- and Single-stranded DNA-binding Proteins Inhibits Telomere Elongation. Journal of Biological Chemistry, 2008, 283, 6935-6941.	3.4	8
45	Telomerase Reverse Transcriptase Is Required for the Localization of Telomerase RNA to Cajal Bodies and Telomeres in Human Cancer Cells. Molecular Biology of the Cell, 2008, 19, 3793-3800.	2.1	65
46	Defining the Cooperative Genetic Changes That Temporally Drive Alveolar Rhabdomyosarcoma. Cancer Research, 2008, 68, 9583-9588.	0.9	71
47	Distinct Functions of POT1 at Telomeres. Molecular and Cellular Biology, 2008, 28, 5251-5264.	2.3	33
48	A Method to Generate Genetically Defined Tumors in Pigs. Methods in Enzymology, 2008, 439, 39-51.	1.0	9
49	Genetic Modeling of Rasâ€Induced Human Rhabdomyosarcoma. Methods in Enzymology, 2008, 438, 419-427.	1.0	7
50	Oncogenic Ras-Induced Expression of Cytokines: A New Target of Anti-Cancer Therapeutics. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2008, 8, 22-27.	3.4	83
51	Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes and Development, 2007, 21, 1714-1719.	5.9	346
52	The <i>PAX3-FKHR</i> Fusion Gene of Rhabdomyosarcoma Cooperates with Loss of p16INK4A to Promote Bypass of Cellular Senescence. Cancer Research, 2007, 67, 6691-6699.	0.9	57
53	From Bread to Bedside: What Budding Yeast has Taught us about the Immortalization of Cancer Cells. , 2007, , 123-139.		0
54	Characterization of the porcine ATM gene: Towards the generation of a novel non-murine animal model for Ataxia-Telangiectasia. Gene, 2007, 405, 27-35.	2.2	11

Christopher M Counter

#	Article	IF	CITATIONS
55	A Genetically Defined Normal Human Somatic Cell System to Study Ras Oncogenesis In Vivo and In Vitro. Methods in Enzymology, 2006, 407, 637-647.	1.0	44
56	Genetically Engineered Human Cancer Models Utilizing Mammalian Transgene Expression. Cell Cycle, 2006, 5, 1074-1079.	2.6	24
57	Divergent Roles for RalA and RalB in Malignant Growth of Human Pancreatic Carcinoma Cells. Current Biology, 2006, 16, 2385-2394.	3.9	212
58	Use of Retrovirus Expression of Interfering RNA to Determine the Contribution of Activated Kâ€Ras and Ras Effector Expression to Human Tumor Cell Growth. Methods in Enzymology, 2006, 407, 556-574.	1.0	21
59	hSnm1B Is a Novel Telomere-associated Protein. Journal of Biological Chemistry, 2006, 281, 15033-15036.	3.4	46
60	Comparison of the Effects of Ras Effector Mutants and Ras Effectors on Transformed and Tumorigenic Growth of Human and Rodent Cells. , 2006, , 257-272.		0
61	Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell, 2005, 7, 533-545.	16.8	330
62	Reduction in the requirement of oncogenic Ras signaling to activation of PI3K/AKT pathway during tumor maintenance. Cancer Cell, 2005, 8, 381-392.	16.8	168
63	Genetic Modeling of Human Rhabdomyosarcoma. Cancer Research, 2005, 65, 4490-4495.	0.9	79
64	A Network of Genetic Events Sufficient to Convert Normal Human Cells to a Tumorigenic State. Cancer Research, 2005, 65, 9824-9828.	0.9	102
65	Blood vessels engineered from human cells. Lancet, The, 2005, 365, 2122-2124.	13.7	211
66	Blood vessels engineered from human cells – Authors' reply. Lancet, The, 2005, 366, 892-893.	13.7	1
67	Characterization of Interactions between PinX1 and Human Telomerase Subunits hTERT and hTR. Journal of Biological Chemistry, 2004, 279, 51745-51748.	3.4	69
68	Rescue of an hTERT Mutant Defective in Telomere Elongation by Fusion with hPot1. Molecular and Cellular Biology, 2004, 24, 3552-3561.	2.3	67
69	A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 2004, 6, 308-318.	10.3	687
70	Loss of hPot1 Function Leads to Telomere Instability and a cut-like Phenotype. Current Biology, 2004, 14, 2264-2270.	3.9	128
71	Creating Porcine Biomedical Models Through Recombineering. Comparative and Functional Genomics, 2004, 5, 262-267.	2.0	7
72	Leveling the Playing Field. Molecular Cell, 2004, 15, 491-492.	9.7	5

#	Article	IF	CITATIONS
73	Genomics and Clinical Medicine: Rationale for Creating and Effectively Evaluating Animal Models. Experimental Biology and Medicine, 2004, 229, 866-875.	2.4	39
74	Human arteries engineered <i>in vitro</i> . EMBO Reports, 2003, 4, 633-638.	4.5	177
75	Bone-related Genes Expressed in Advanced Malignancies Induce Invasion and Metastasis in a Genetically Defined Human Cancer Model. Journal of Biological Chemistry, 2003, 278, 15951-15957.	3.4	134
76	Telomere shortening in cultured autografts of patients with burns. Lancet, The, 2003, 361, 1345-1346.	13.7	32
77	In Vivo Regulation of hTERT Expression and Telomerase Activity by Androgen Journal of Urology, 2003, 170, 615-618.	0.4	66
78	Putative Telomere-Recruiting Domain in the Catalytic Subunit of Human Telomerase. Molecular and Cellular Biology, 2003, 23, 3237-3246.	2.3	44
79	C-Terminal Regions of the Human Telomerase Catalytic Subunit Essential for In Vivo Enzyme Activity. Molecular and Cellular Biology, 2002, 22, 6234-6246.	2.3	98
80	The Nucleolar Localization Domain of the Catalytic Subunit of Human Telomerase. Journal of Biological Chemistry, 2002, 277, 24764-24770.	3.4	110
81	Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes and Development, 2002, 16, 2045-2057.	5.9	373
82	Mutational analysis defines a minimum level of telomerase activity required for tumourigenic growth of human cells. Oncogene, 2002, 21, 7121-7125.	5.9	24
83	Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nature Biotechnology, 2002, 20, 587-591.	17.5	351
84	INHIBITION OF TELOMERASE IS RELATED TO THE LIFE SPAN AND TUMORIGENICITY OF HUMAN PROSTATE CANCER CELLS. Journal of Urology, 2001, 166, 694-698.	0.4	28
85	N-Terminal Domains of the Human Telomerase Catalytic Subunit Required for Enzyme Activity in Vivo. Molecular and Cellular Biology, 2001, 21, 7775-7786.	2.3	162
86	Creation of human tumour cells with defined genetic elements. Nature, 1999, 400, 464-468.	27.8	2,148
87	Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene, 1998, 16, 1217-1222.	5.9	383
88	hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization. Cell, 1997, 90, 785-795.	28.9	1,689
89	The roles of telomeres and telomerase in cell life span. Mutation Research - Reviews in Genetic Toxicology, 1996, 366, 45-63.	2.9	116
90	The telomere hypothesis of cellular aging. Experimental Gerontology, 1992, 27, 375-382.	2.8	465

#	Article	IF	CITATIONS
91	Treatment with the nitric oxide synthase inhibitor L-NAME provides a survival advantage in a mouse model of <i>Kras</i> mutation-positive, non-small cell lung cancer. Oncotarget, 0, 7, 42385-42392.	1.8	16
92	An ultra-sensitive method to detect mutations in human <i>RAS</i> templates. Small GTPases, 0, , .	1.6	0