Shao-Nong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7538881/publications.pdf

Version: 2024-02-01

53794 69250 7,445 173 45 77 citations h-index g-index papers 183 183 183 7841 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. Journal of Natural Products, 2018, 81, 679-690.	3.0	719
2	Importance of Purity Evaluation and the Potential of Quantitative $\langle \sup 1 \langle \sup H \mid NMR \mid as a \mid Purity \mid Assay.$ Journal of Medicinal Chemistry, 2014, 57, 9220-9231.	6.4	289
3	Universal quantitative NMR analysis of complex natural samples. Current Opinion in Biotechnology, 2014, 25, 51-59.	6.6	272
4	Countercurrent Separation of Natural Products: An Update. Journal of Natural Products, 2015, 78, 1765-1796.	3.0	241
5	Dentin biomodification: strategies, renewable resources and clinical applications. Dental Materials, 2014, 30, 62-76.	3.5	205
6	Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery?. Journal of Medicinal Chemistry, 2016, 59, 1671-1690.	6.4	195
7	Phytochemistry and biological properties of glabridin. Fìtoterapìâ, 2013, 90, 160-184.	2.2	190
8	Black Cohosh Acts as a Mixed Competitive Ligand and Partial Agonist of the Serotonin Receptor. Journal of Agricultural and Food Chemistry, 2003, 51, 5661-5670.	5.2	185
9	Serotonergic Activity-Guided Phytochemical Investigation of the Roots of Angelica sinensis. Journal of Natural Products, 2006, 69, 536-541.	3.0	127
10	Sterols from the fungus Lactarium volemus. Phytochemistry, 2001, 56, 801-806.	2.9	113
11	Isolation, Structure Elucidation, and Absolute Configuration of 26-Deoxyactein from Cimicifugarace mosa and Clarification of Nomenclature Associated with 27-Deoxyactein. Journal of Natural Products, 2002, 65, 601-605.	3.0	106
12	Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins. Acta Biomaterialia, 2014, 10, 3288-3294.	8.3	103
13	The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Natural Product Reports, 2019, 36, 35-107.	10.3	92
14	Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Molecular Nutrition and Food Research, 2014, 58, 1962-1969.	3.3	89
15	Black Cohosh (Cimicifuga racemosa L.) Protects against Menadione-Induced DNA Damage through Scavenging of Reactive Oxygen Species:  Bioassay-Directed Isolation and Characterization of Active Principles. Journal of Agricultural and Food Chemistry, 2002, 50, 7022-7028.	5.2	87
16	The Chemical and Biologic Profile of a Red Clover (Trifolium pratense L.) Phase II Clinical Extract. Journal of Alternative and Complementary Medicine, 2006, 12, 133-139.	2.1	85
17	HiFSA Fingerprinting Applied to Isomers with Near-Identical NMR Spectra: The Silybin/Isosilybin Case. Journal of Organic Chemistry, 2013, 78, 2827-2839.	3.2	84
18	Complete ¹ H NMR spectral analysis of ten chemical markers of <i>Ginkgo biloba</i> Magnetic Resonance in Chemistry, 2012, 50, 569-575.	1.9	81

#	Article	IF	Citations
19	In Vitro Serotonergic Activity of Black Cohosh and Identification of <i>N</i> _{Ï%} -Methylserotonin as a Potential Active Constituent. Journal of Agricultural and Food Chemistry, 2008, 56, 11718-11726.	5.2	79
20	The Essential Medicinal Chemistry of Cannabidiol (CBD). Journal of Medicinal Chemistry, 2020, 63, 12137-12155.	6.4	79
21	In vivo estrogenic comparisons of Trifolium pratense (red clover) Humulus lupulus (hops), and the pure compounds isoxanthohumol and 8-prenylnaringenin. Chemico-Biological Interactions, 2008, 176, 30-39.	4.0	78
22	Essential Parameters for Structural Analysis and Dereplication by ¹ H NMR Spectroscopy. Journal of Natural Products, 2014, 77, 1473-1487.	3.0	77
23	Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Science Advances, 2022, 8, .	10.3	77
24	Evaluation of Estrogenic Activity of Licorice Species in Comparison with Hops Used in Botanicals for Menopausal Symptoms. PLoS ONE, 2013, 8, e67947.	2.5	75
25	Cancer Chemopreventive Activity and Metabolism of Isoliquiritigenin, a Compound Found in Licorice. Cancer Prevention Research, 2010, 3, 221-232.	1.5	70
26	Screening Natural Products for Inhibitors of Quinone Reductase-2 Using Ultrafiltration LCâ^'MS. Analytical Chemistry, 2011, 83, 1048-1052.	6.5	70
27	The Tandem of Full Spin Analysis and qHNMR for the Quality Control of Botanicals Exemplified withGinkgo biloba. Journal of Natural Products, 2012, 75, 238-248.	3.0	70
28	Mass spectrometric dereplication of nitrogen-containing constituents of black cohosh (Cimicifuga) Tj ETQq0 0 (O rgBT /Ον 2.2	erlock 10 Tf 5
29	High-performance liquid chromatographic analysis of Black Cohosh (Cimicifuga racemosa) constituents with in-line evaporative light scattering and photodiode array detection. Analytica Chimica Acta, 2002, 471, 61-75.	5.4	67
30	Mimicking the Hierarchical Functions of Dentin Collagen Cross-Links with Plant Derived Phenols and Phenolic Acids. Langmuir, 2014, 30, 14887-14893.	3.5	64
31	Diterpenoids from the Flowers of Rhododendron molle. Journal of Natural Products, 2004, 67, 1903-1906.	3.0	62
32	Analysis and Purification of Bioactive Natural Products: The AnaPurNa Study. Journal of Natural Products, 2012, 75, 1243-1255.	3.0	61
33	Phytoconstituents from Vitex agnus-castus fruits. Fìtoterapìâ, 2011, 82, 528-533.	2.2	60
34	The Multiple Biological Targets of Hops and Bioactive Compounds. Chemical Research in Toxicology, 2019, 32, 222-233.	3.3	60
35	Cimiracemosides lâ^'P, New 9,19-Cyclolanostane Triterpene Glycosides from Cimicifuga racemosa. Journal of Natural Products, 2002, 65, 1391-1397.	3.0	57
36	Validation of a Generic Quantitative $\langle \sup 1 \langle \sup H \mid NMR \mid Method \mid Froducts \mid Analysis \mid Phytochemical Analysis, 2013, 24, 581-597.$	2.4	56

#	Article	IF	Citations
37	Coumaroyl Iridoids and a Depside from Cranberry (Vaccinium macrocarpon). Journal of Natural Products, 2007, 70, 253-258.	3.0	55
38	A Triterpene Glycoside from Black Cohosh that Inhibits Osteoclastogenesis by Modulating RANKL and TNFα Signaling Pathways. Chemistry and Biology, 2007, 14, 860-869.	6.0	53
39	Opioidergic mechanisms underlying the actions of Vitex agnus-castus L Biochemical Pharmacology, 2011, 81, 170-177.	4.4	53
40	Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. European Journal of Pharmaceutical Sciences, 2017, 109, 182-190.	4.0	53
41	Inhibition of UropathogenicEscherichia coliby Cranberry Juice:Â A New Antiadherence Assay. Journal of Agricultural and Food Chemistry, 2005, 53, 8940-8947.	5.2	52
42	Cimipronidine, a Cyclic Guanidine Alkaloid from Cimicifuga racemosa. Journal of Natural Products, 2005, 68, 1266-1270.	3.0	50
43	Solubility study of phytochemical cross-linking agents on dentin stiffness. Journal of Dentistry, 2010, 38, 431-436.	4.1	50
44	Discovery and Characterization of the Tuberculosis Drug Lead Ecumicin. Organic Letters, 2014, 16, 6044-6047.	4.6	50
45	Diterpenoids from isodon flavidus. Phytochemistry, 1998, 48, 1025-1029.	2.9	49
46	Integrated analytical assets aid botanical authenticity and adulteration management. Fìtoterapìâ, 2018, 129, 401-414.	2.2	49
47	Dynamic Residual Complexity of the Isoliquiritigenin–Liquiritigenin Interconversion During Bioassay. Journal of Agricultural and Food Chemistry, 2013, 61, 2146-2157.	5.2	46
48	Orthogonal analytical methods for botanical standardization: Determination of green tea catechins by qNMR and LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2014, 93, 59-67.	2.8	46
49	Diterpenoids from the Fruits ofRhododendron molle. Journal of Natural Products, 2000, 63, 1214-1217.	3.0	44
50	Proton Fingerprints Portray Molecular Structures: Enhanced Description of the ¹ H NMR Spectra of Small Molecules. Journal of Organic Chemistry, 2013, 78, 9963-9968.	3.2	44
51	Subtle Chemical Shifts Explain the NMR Fingerprints of Oligomeric Proanthocyanidins with High Dentin Biomodification Potency. Journal of Organic Chemistry, 2015, 80, 7495-7507.	3.2	44
52	Countercurrent assisted quantitative recovery of metabolites from plant-associated natural deep eutectic solvents. Fìtoterapìâ, 2016, 112, 30-37.	2.2	44
53	Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals. Journal of Natural Products, 2015, 78, 2007-2022.	3.0	43
54	Silymarin content in Silybum marianum populations growing in Egypt. Industrial Crops and Products, 2016, 83, 729-737.	5.2	43

#	Article	IF	CITATIONS
55	A galloylated dimeric proanthocyanidin from grape seed exhibits dentin biomodification potential. Fìtoterapìâ, 2015, 101, 169-178.	2.2	42
56	Evolution of Quantitative Measures in NMR: Quantum Mechanical qHNMR Advances Chemical Standardization of a Red Clover (<i>Trifolium pratense</i>) Extract. Journal of Natural Products, 2017, 80, 634-647.	3.0	42
57	Cimiracemates A–D, phenylpropanoid esters from the rhizomes of Cimicifuga racemosa. Phytochemistry, 2002, 61, 409-413.	2.9	41
58	Diarylheptanoids from <i>Dioscorea villosa</i> (Wild Yam). Journal of Natural Products, 2012, 75, 2168-2177.	3.0	40
59	Dereplication, Residual Complexity, and Rational Naming: The Case of the <i>Actaea</i> Triterpenes. Journal of Natural Products, 2012, 75, 432-443.	3.0	40
60	Hop (<i>Humulus lupulus</i> L.) Extract and 6-Prenylnaringenin Induce P450 1A1 Catalyzed Estrogen 2-Hydroxylation. Chemical Research in Toxicology, 2016, 29, 1142-1150.	3.3	40
61	Hops (<i>Humulus lupulus</i>) Inhibits Oxidative Estrogen Metabolism and Estrogen-Induced Malignant Transformation in Human Mammary Epithelial cells (MCF-10A). Cancer Prevention Research, 2012, 5, 73-81.	1.5	39
62	Antiâ€₹B polyynes from the roots of <i>Angelica sinensis</i> . Phytotherapy Research, 2008, 22, 878-882.	5.8	38
63	Dynamic Nature of the Ligustilide Complex. Journal of Natural Products, 2008, 71, 1604-1611.	3.0	38
64	Eucarobustols A–I, Conjugates of Sesquiterpenoids and Acylphloroglucinols from <i>Eucalyptus robusta</i> . Journal of Natural Products, 2016, 79, 1365-1372.	3.0	38
65	Guanidine Alkaloids and Pictetâ^'Spengler Adducts from Black Cohosh (<i>Cimicifuga racemosa</i>). Journal of Natural Products, 2009, 72, 433-437.	3.0	36
66	Differential regulation of detoxification enzymes in hepatic and mammary tissue by hops (<i><scp>H</scp>umulus lupulus</i>) in vitro and in vivo. Molecular Nutrition and Food Research, 2013, 57, 1055-1066.	3.3	36
67	Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving. Journal of Organic Chemistry, 2016, 81, 878-889.	3.2	36
68	DNA damaging activity of ellagic acid derivatives. Bioorganic and Medicinal Chemistry, 2003, 11, 1593-1596.	3.0	35
69	Inhibition of human cytochrome P450 enzymes by hops (Humulus lupulus) and hop prenylphenols. European Journal of Pharmaceutical Sciences, 2014, 53, 55-61.	4.0	35
70	Dissemination of original NMR data enhances reproducibility and integrity in chemical research. Natural Product Reports, 2016, 33, 1028-1033.	10.3	35
71	Evidence to the role of interflavan linkages and galloylation of proanthocyanidins at sustaining long-term dentin biomodification. Dental Materials, 2019, 35, 328-334.	3.5	33
72	Diterpene glucosides from Pieris formosa. Phytochemistry, 2000, 54, 847-852.	2.9	32

#	Article	IF	CITATIONS
73	Three diterpene glucosides and a diphenylamine derivative from Pieris formosa. Fìtoterapìâ, 2001, 72, 779-787.	2.2	32
74	Absolute Configuration of Native Oligomeric Proanthocyanidins with Dentin Biomodification Potency. Journal of Organic Chemistry, 2017, 82, 1316-1329.	3.2	32
75	<i>In vitro</i> metabolic interactions between black cohosh (<i>Cimicifuga racemosa</i>) and tamoxifen via inhibition of cytochromes P450 2D6 and 3A4. Xenobiotica, 2011, 41, 1021-1030.	1.1	31
76	Quantification of a Botanical Negative Marker without an Identical Standard: Ginkgotoxin in <i>Ginkgo biloba</i> . Journal of Natural Products, 2014, 77, 611-617.	3.0	31
77	Phytochemistry of cimicifugic acids and associated bases in <i>Cimicifuga racemosa</i> root extracts. Phytochemical Analysis, 2009, 20, 120-133.	2.4	30
78	Induction of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) by Glycyrrhiza Species Used for Women's Health: Differential Effects of the Michael Acceptors Isoliquiritigenin and Licochalcone A. Chemical Research in Toxicology, 2015, 28, 2130-2141.	3.3	30
79	Integrated standardization concept for Angelica botanicals using quantitative NMR. Fìtoterapìâ, 2012, 83, 18-32.	2.2	28
80	Antimycobacterial Rufomycin Analogues from <i>Streptomyces atratus</i> Strain MJM3502. Journal of Natural Products, 2020, 83, 657-667.	3.0	28
81	2D NMR Barcoding and Differential Analysis of Complex Mixtures for Chemical Identification: The <i>Actaea</i> Triterpenes. Analytical Chemistry, 2014, 86, 3964-3972.	6.5	27
82	Grayanane Diterpenoids from Pieris formosa. Journal of Natural Products, 1998, 61, 1473-1475.	3.0	26
83	Dynamic Residual Complexity of Natural Products by qHNMR: Solution Stability of Desmethylxanthohumol. Planta Medica, 2009, 75, 757-762.	1.3	26
84	The Generally Useful Estimate of Solvent Systems (GUESS) method enables the rapid purification of methylpyridoxine regioisomers by countercurrent chromatography. Journal of Chromatography A, 2015, 1426, 248-251.	3.7	26
85	Silybum marianum pericarp yields enhanced silymarin products. Fìtoterapìâ, 2016, 112, 136-143.	2.2	26
86	Centrifugal partition chromatography enables selective enrichment of trimeric and tetrameric proanthocyanidins for biomaterial development. Journal of Chromatography A, 2018, 1535, 55-62.	3.7	26
87	GABAergic phthalide dimers fromAngelica sinensis (Oliv.) Diels. Phytochemical Analysis, 2006, 17, 398-405.	2.4	25
88	Differential Effects of Glycyrrhiza Species on Genotoxic Estrogen Metabolism: Licochalcone A Downregulates P450 1B1, whereas Isoliquiritigenin Stimulates It. Chemical Research in Toxicology, 2015, 28, 1584-1594.	3.3	25
89	Sweet spot matching: A thin-layer chromatography-based countercurrent solvent system selection strategy. Journal of Chromatography A, 2017, 1504, 46-54.	3.7	25
90	Oligomeric proanthocyanidins released from dentin induce regenerative dental pulp cell response. Acta Biomaterialia, 2017, 55, 262-270.	8.3	25

#	Article	IF	Citations
91	DESIGNER Extracts as Tools to Balance Estrogenic and Chemopreventive Activities of Botanicals for Women's Health. Journal of Natural Products, 2017, 80, 2284-2294.	3.0	24
92	A standardized Humulus lupulus (L.) ethanol extract partially prevents ovariectomy-induced bone loss in the rat without induction of adverse effects in the uterus. Phytomedicine, 2017, 34, 50-58.	5. 3	24
93	Red Clover Aryl Hydrocarbon Receptor (AhR) and Estrogen Receptor (ER) Agonists Enhance Genotoxic Estrogen Metabolism. Chemical Research in Toxicology, 2017, 30, 2084-2092.	3.3	23
94	SAR Study on Estrogen Receptor $\hat{l}\pm\hat{l}^2$ Activity of (Iso)flavonoids: Importance of Prenylation, C-Ring (Un)Saturation, and Hydroxyl Substituents. Journal of Agricultural and Food Chemistry, 2020, 68, 10651-10663.	5.2	23
95	Speciesâ€specific Standardisation of Licorice by Metabolomic Profiling of Flavanones and Chalcones. Phytochemical Analysis, 2014, 25, 378-388.	2.4	21
96	The influence of natural deep eutectic solvents on bioactive natural products: studying interactions between a hydrogel model and Schisandra chinensis metabolites. Fìtoterapìâ, 2018, 127, 212-219.	2.2	21
97	Estrogen Receptor (ER) Subtype Selectivity Identifies 8-Prenylapigenin as an $ER\hat{I}^2$ Agonist from <i>Glycyrrhiza inflata</i> and Highlights the Importance of Chemical and Biological Authentication. Journal of Natural Products, 2018, 81, 966-975.	3.0	20
98	Suadimins A–C, Unprecedented Dimeric Quinoline Alkaloids with Antimycobacterial Activity from ⟨i>Melodinus suaveolens⟨ i>. Organic Letters, 2019, 21, 7065-7068.	4.6	20
99	Complete ¹ H NMR spectral fingerprint of huperzine A. Magnetic Resonance in Chemistry, 2007, 45, 878-882.	1.9	19
100	The 9th International Countercurrent Chromatography Conference held at Dominican University, Chicago, USA, August 1–3, 2016. Journal of Chromatography A, 2017, 1520, 1-8.	3.7	19
101	Diterpenoids fromIsodoneriocalyxâ€. Journal of Natural Products, 1999, 62, 782-784.	3.0	18
102	<i>K</i> -Targeted Metabolomic Analysis Extends Chemical Subtraction to DESIGNER Extracts: Selective Depletion of Extracts of Hops (<i>Humulus lupulus</i>). Journal of Natural Products, 2014, 77, 2595-2604.	3.0	18
103	Digital NMR Profiles as Building Blocks: Assembling ¹ H Fingerprints of Steviol Glycosides. Journal of Natural Products, 2015, 78, 658-665.	3.0	18
104	Diterpenoid alkaloids from Aconitum talassicum. Phytochemistry, 1994, 37, 1467-1470.	2.9	17
105	An experimental implementation of chemical subtraction. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46, 692-698.	2.8	17
106	High-Content Screening and Mechanism-Based Evaluation of Estrogenic Botanical Extracts. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 283-293.	1.1	17
107	Stereochemistry of a Second Riolozane and Other Diterpenoids from <i>Jatropha dioica</i> . Journal of Natural Products, 2017, 80, 2252-2262.	3.0	17
108	Dynamics of the isoflavone metabolome of traditional preparations of Trifolium pratense L Journal of Ethnopharmacology, 2019, 238, 111865.	4.1	17

#	Article	lF	Citations
109	Preparation of flavone di-C-glycoside isomers from Jian-Gu injection (Premna fulva Craib.) using recycling counter-current chromatography. Journal of Chromatography A, 2019, 1599, 180-186.	3.7	17
110	Selective Depletion and Enrichment of Constituents in "Curcumin―and Other <i>Curcuma longa</i> Preparations. Journal of Natural Products, 2019, 82, 621-630.	3.0	16
111	Stereochemical effects in mass spectrometry. Part 10-reaction mass spectrometry of cyclic glycols and monosaccharides with methylene chloride as reagent gas. Organic Mass Spectrometry, 1991, 26, 645-648.	1.3	15
112	Chemotaxonomic and biosynthetic relationships between flavonolignans produced by Silybum marianum populations. Fìtoterapìâ, 2017, 119, 175-184.	2.2	15
113	Quantum mechanical NMR full spin analysis in pharmaceutical identity testing and quality control. Journal of Pharmaceutical and Biomedical Analysis, 2021, 192, 113601.	2.8	15
114	Triterpene Saponins from Craniotome Furcata. Natural Product Research, 2002, 16, 161-166.	0.4	14
115	Chlorination DiversifiesCimicifuga racemosaTriterpene Glycosides. Journal of Natural Products, 2007, 70, 1016-1023.	3.0	14
116	Holistic Analysis Enhances the Description of Metabolic Complexity in Dietary Natural Products. Advances in Nutrition, 2016, 7, 179-189.	6.4	14
117	Proanthocyanidin Dimers and Trimers from <i>Vitis vinifera</i> Provide Diverse Structural Motifs for the Evaluation of Dentin Biomodification. Journal of Natural Products, 2019, 82, 2387-2399.	3.0	14
118	Preparation of DESIGNER extracts of red clover (Trifolium pratense L.) by centrifugal partition chromatography. Journal of Chromatography A, 2019, 1605, 360277.	3.7	14
119	Tri- and Tetrameric Proanthocyanidins with Dentin Bioactivities from <i>Pinus massoniana</i> Journal of Organic Chemistry, 2020, 85, 8462-8479.	3.2	14
120	Rare A-Type, Spiro-Type, and Highly Oligomeric Proanthocyanidins from <i>Pinus massoniana </i> Organic Letters, 2020, 22, 5304-5308.	4.6	14
121	Accurate and Precise External Calibration Enhances the Versatility of Quantitative NMR (qNMR). Analytical Chemistry, 2021, 93, 2733-2741.	6.5	14
122	Studying Mass Balance and the Stability of (<i>Z</i>)-Ligustilide from <i>Angelica sinensis</i> Helps to Bridge a Botanical Instability–Bioactivity Chasm. Journal of Natural Products, 2019, 82, 2400-2408.	3.0	13
123	Pharmacognosy of Black Cohosh: The Phytochemical and Biological Profile of a Major Botanical Dietary Supplement. Progress in the Chemistry of Organic Natural Products, 2014, 99, 1-68.	1.1	13
124	Nitrogen-Containing Constituents of Black Cohosh: Chemistry, Structure Elucidation, and Biological Activities., 2015, 45, 31-75.		12
125	Cycloartane Triterpenes from the Aerial Parts of <i> Actaea racemosa </i> . Journal of Natural Products, 2016, 79, 541-554.	3.0	12
126	Evidence for Chemopreventive and Resilience Activity of Licorice: <i>Glycyrrhiza Glabra</i> and G. <i>Inflata</i> Extracts Modulate Estrogen Metabolism in ACI Rats. Cancer Prevention Research, 2018, 11, 819-830.	1.5	12

#	Article	IF	CITATIONS
127	Pharmacokinetic Interactions of a Hop Dietary Supplement with Drug Metabolism in Perimenopausal and Postmenopausal Women. Journal of Agricultural and Food Chemistry, 2020, 68, 5212-5220.	5.2	12
128	Evaluation of estrogenic potency of a standardized hops extract on mammary gland biology and on MNU-induced mammary tumor growth in rats. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 234-241.	2.5	11
129	A dynamic mechanical method to assess bulk viscoelastic behavior of the dentin extracellular matrix. Dental Materials, 2020, 36, 1536-1543.	3.5	11
130	Quantum Mechanics-Based Structure Analysis of Cyclic Monoterpene Glycosides from <i>Rhodiola rosea</i> . Journal of Natural Products, 2020, 83, 1950-1959.	3.0	11
131	Unveiling structure–activity relationships of proanthocyanidins with dentin collagen. Dental Materials, 2021, 37, 1633-1644.	3.5	11
132	Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses Science Advances, 2022, , eabi6110.	10.3	11
133	Computerâ€assisted ¹ H NMR analysis of the antiâ€tuberculosis drug lead ecumicin. Magnetic Resonance in Chemistry, 2017, 55, 239-244.	1.9	10
134	Proanthocyanidin Block Arrays (PACBAR) for Comprehensive Capture and Delineation of Proanthocyanidin Structures. Journal of Agricultural and Food Chemistry, 2020, 68, 13541-13549.	5.2	10
135	Classification of Flavonoid Metabolomes via Data Mining and Quantification of Hydroxyl NMR Signals. Analytical Chemistry, 2020, 92, 4954-4962.	6.5	10
136	Rufomycins or llamycins: Naming Clarifications and Definitive Structural Assignments. Journal of Natural Products, 2021, 84, 2644-2663.	3.0	10
137	Preparation and crystal structure of [(η5-C5H4CH3)MoFeCo(CO)6(μ,η4-Ph2PCH2CH2PPh2) (μ3-S)]. Polyhedron, 1996, 15, 2613-2616.	2.2	9
138	Structural Sequencing of Oligopeptides Aided by $\sup 1< \sup H$ Iterative Full-Spin Analysis. Journal of Natural Products, 2017, 80, 2630-2643.	3.0	9
139	Selective Preparation and High Dynamic-Range Analysis of Cannabinoids in "CBD Oil―and Other <i>Cannabis sativa</i> Preparations. Journal of Natural Products, 2022, 85, 634-646.	3.0	8
140	Diterpenoid Alkaloids from Delphinium caeruleum. Planta Medica, 1993, 59, 83-85.	1.3	7
141	Pharmaceutical analysis by NMR can accommodate strict impurity thresholds: The case of choline. Journal of Pharmaceutical and Biomedical Analysis, 2022, 214, 114709.	2.8	7
142	Tandem of Countercurrent Separation and qHNMR Enables Gravimetric Analyses: Absolute Quantitation of the <i>RhodiolaÂrosea</i> ÂMetabolome. Analytical Chemistry, 2021, 93, 11701-11709.	6.5	6
143	Synthesis of Cimiracemate B, A Phenylpropanoid found in Cimicifuga racemosa. Natural Product Research, 2005, 19, 287-290.	1.8	5
144	Lipidated steroid saponins from Dioscorea villosa (wild yam). Fìtoterapìâ, 2013, 91, 113-124.	2.2	5

#	Article	IF	CITATIONS
145	Formation of (2 <i>R</i>)- and (2 <i>S</i>)-8-Prenylnaringenin Glucuronides by Human UDP-Glucuronosyltransferases. Journal of Agricultural and Food Chemistry, 2019, 67, 11650-11656.	5.2	5
146	NMR based quantitation of cycloartane triterpenes in black cohosh extracts. Fìtoterapìâ, 2020, 141, 104467.	2.2	5
147	Differentiation of Actaea species by NMR metabolomics analysis. Fìtoterapìâ, 2020, 146, 104686.	2.2	5
148	No Clinically Relevant Pharmacokinetic Interactions of a Red Clover Dietary Supplement with Cytochrome P450 Enzymes in Women. Journal of Agricultural and Food Chemistry, 2020, 68, 13929-13939.	5.2	5
149	Targeting Trimeric and Tetrameric Proanthocyanidins of <i>Cinnamomum verum</i> Bark as Bioactives for Dental Therapies. Journal of Natural Products, 2020, 83, 3287-3297.	3.0	5
150	Effect of dentin biomodification delivered by experimental acidic and neutral primers on resin adhesion. Journal of Dentistry, 2020, 99, 103354.	4.1	5
151	Investigation of red clover (Trifolium pratense) isoflavonoid residual complexity by off-line CCS-qHNMR. Fìtoterapìâ, 2022, 156, 105016.	2.2	5
152	Diterpenoids from Isodon gesneroides. Phytochemistry, 1998, 48, 155-158.	2.9	4
153	Countercurrent separation assisted identification of two mammalian steroid hormones in Vitex negundo. Journal of Chromatography A, 2018, 1553, 108-115.	3.7	4
154	6-Prenylnaringenin from Hops Disrupts ERα-Mediated Downregulation of <i>CYP1A1</i> to Facilitate Estrogen Detoxification. Chemical Research in Toxicology, 2020, 33, 2793-2803.	3.3	4
155	Diterpenoids from isodon calcicola var. subculva. Phytochemistry, 1998, 49, 2437-2441.	2.9	3
156	Prenylated Coumaric Acids from <i>Artemisia scoparia</i> Beneficially Modulate Adipogenesis. Journal of Natural Products, 2021, 84, 1078-1086.	3.0	3
157	Plain $\langle \sup 1 \langle \sup \rangle$ H nuclear magnetic resonance analysis streamlines the quality control of antiviral favipiravir and congeneric World Health Organization essential medicines. Magnetic Resonance in Chemistry, 2021, 59, 746-751.	1.9	3
158	Auto-hydrolysis of red clover as "green―approach to (iso)flavonoid enriched products. Fìtoterapìâ, 2021, 152, 104878.	2.2	3
159	Rufomycin Exhibits Dual Effects Against Mycobacterium abscessus Infection by Inducing Host Defense and Antimicrobial Activities. Frontiers in Microbiology, 2021, 12, 695024.	3.5	3
160	Botanical Integrity: Part 2: Traditional and Modern Analytical Approaches. HerbalGram, 2016, 109, 60-64.	0.0	3
161	Linear regression analysis of silychristin A, silybin A and silybin B contents in Silybum marianum. Natural Product Research, 2020, 34, 305-310.	1.8	2
162	The Untargeted Capability of NMR Helps Recognizing Nefarious Adulteration in Natural Products. Journal of Natural Products, 2021, 84, 846-856.	3.0	2

#	Article	IF	CITATIONS
163	Silica Gel-mediated Oxidation of Prenyl Motifs Generates Natural Product-Like Artifacts. Planta Medica, 2021, 87, 998-1007.	1.3	2
164	Paradoxical effects of galloyl motifs in the interactions of proanthocyanidins with collagenâ€rich dentin. Journal of Biomedical Materials Research - Part A, 2022, 110, 196-203.	4.0	2
165	Diterpenoids from isodon melissoides. Phytochemistry, 1998, 47, 1089-1092.	2.9	2
166	Proanthocyanidin Tetramers and Pentamers from <i>Cinnamomum verum</i> Biomodification Bioactivities. Journal of Natural Products, 2022, 85, 391-404.	3.0	2
167	Stereochemical effects in mass spectrometry XI. Negative ion fast atom bombardment mass spectrometry of saccharides and glycosides using phenylboronic acid as reagent. Chinese Journal of Chemistry, 1992, 10, 337-343.	4.9	1
168	Chemistry of Medicinal Plants, Foods, and Natural Products 2015. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-2.	1.6	1
169	Oligomeric proanthocyanidins inhibit endogenous enzymatic activity of deciduous carious dentin. Pediatric Dental Journal, 2021, 31, 73-79.	0.7	1
170	Botanical Integrity: The Importance of the Integration of Chemical, Biological, and Botanical Analyses, and the Role of DNA Barcoding. HerbalGram, 2015, 106, 58-60.	0.0	1
171	Galloylated proanthocyanidins in dentin matrix exhibit biocompatibility and induce differentiation in dental stem cells. Journal of Bioactive and Compatible Polymers, 2022, 37, 220-230.	2.1	1
172	Two new compounds from the flowers of Rhododendron molle. Chinese Journal of Natural Medicines, 2013, 11, 525-527.	1.3	0
173	Chemistry of Medicinal Plants, Foods, and Natural Products. Journal of Analytical Methods in Chemistry, 2014, 2014, 1-2.	1.6	0