Sol Moi Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7538096/publications.pdf

Version: 2024-02-01

57758 64796 7,263 149 44 79 citations h-index g-index papers 152 152 152 4158 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterization of bio-adsorptive removal performance of strontium through ureolysis-mediated bio-mineralization. Chemosphere, 2022, 288, 132586.	8.2	1
2	Exploration of effects of CO2 exposure on the NOx-removal performance of TiO2-incorporated Portland cement evaluated via microstructural and morphological investigation. Journal of Building Engineering, 2022, 45, 103609.	3.4	3
3	Self-healing of Portland and slag cement binder systems incorporating circulating fluidized bed combustion bottom ash. Construction and Building Materials, 2022, 314, 125571.	7.2	7
4	Effect of the molar ratio of calcium sulfate over ye'elimite on the reaction of CSA cement/slag blends under an accelerated carbonation condition. Journal of Building Engineering, 2022, 46, 103785.	3.4	2
5	Evaluation of physicochemical properties and environmental impact of environmentally amicable Portland cement/metakaolin bricks exposed to humid or CO2 curing condition. Journal of Building Engineering, 2022, 47, 103831.	3.4	5
6	Enhanced electrical heating capability of CNT-embedded cementitious composites exposed to water ingress with addition of silica aerogel. Ceramics International, 2022, 48, 13356-13365.	4.8	9
7	Improved electromagnetic wave shielding capability of carbonyl iron powder-embedded lightweight CFRP composites. Composite Structures, 2022, 286, 115326.	5.8	23
8	Thermodynamic modeling and mechanical properties of hybrid alkaline cement composites. Construction and Building Materials, 2022, 322, 126381.	7.2	3
9	A combined experimental and micromechanical approach to investigating PTC and NTC effects in CNT-polypropylene composites under a self-heating condition. Composite Structures, 2022, 289, 115440.	5.8	7
10	Local Al network and material characterization of belite-calcium sulfoaluminate (CSA) cements. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	7
11	Modifications in hydration kinetics and characteristics of calcium aluminate cement upon blending with calcium sulfoaluminate cement. Construction and Building Materials, 2022, 342, 127958.	7.2	12
12	Hydration of calcium sulfoaluminate cement blended with blast-furnace slag. Construction and Building Materials, 2021, 268, 121214.	7.2	44
13	Influence of carbon fiber additions on the electromagnetic wave shielding characteristics of CNT-cement composites. Construction and Building Materials, 2021, 269, 121238.	7.2	42
14	Effects of silica aerogel inclusion on the stability of heat generation and heat-dependent electrical characteristics of cementitious composites with CNT. Cement and Concrete Composites, 2021, 115, 103861.	10.7	26
15	Facile Synthesis of Sprayed CNTs Layer-Embedded Stretchable Sensors with Controllable Sensitivity. Polymers, 2021, 13, 311.	4.5	13
16	Hydration characteristics of calcium sulfoaluminate (CSA) cement/portland cement blended pastes. Journal of Building Engineering, 2021, 34, 101880.	3.4	19
17	A novel physicomechanical approach to dispersion of carbon nanotubes in polypropylene composites. Composite Structures, 2021, 258, 113377.	5.8	24
18	Exploring Structural Evolution of Portland Cement Blended with Supplementary Cementitious Materials in Seawater. Materials, 2021, 14, 1210.	2.9	1

#	Article	IF	CITATIONS
19	Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: A review. Construction and Building Materials, 2021, 274, 122094.	7.2	39
20	Experimental and theoretical studies of hydration of ultra-high performance concrete cured under various curing conditions. Construction and Building Materials, 2021, 278, 122352.	7.2	17
21	Carbonation of calcium sulfoaluminate cement blended with blast furnace slag. Cement and Concrete Composites, 2021, 118, 103918.	10.7	45
22	Reaction of hydrated cement paste with supercritical carbon dioxide. Construction and Building Materials, 2021, 281, 122615.	7.2	17
23	Microstructural evolution and carbonation behavior of lime-slag binary binders. Cement and Concrete Composites, 2021, 119, 104000.	10.7	21
24	MgO-induced phase variation in alkali-activated binders synthesized under hydrothermal conditions. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	3.1	4
25	Influence of the Precursor, Molarity and Temperature on the Rheology and Structural Buildup of Alkali-Activated Materials. Materials, 2021, 14, 3590.	2.9	8
26	Influence of Polyethylene Terephthalate Powder on Hydration of Portland Cement. Polymers, 2021, 13, 2551.	4.5	6
27	Influence of Portland cement and alkali-activated slag binder on the thermoelectric properties of the p-type composites with MWCNT. Construction and Building Materials, 2021, 292, 123393.	7.2	10
28	Improved electric heating characteristics of CNT-embedded polymeric composites with an addition of silica aerogel. Composites Science and Technology, 2021, 212, 108866.	7.8	25
29	Characterization of reactive MgO-modified calcium sulfoaluminate cements upon carbonation. Cement and Concrete Research, 2021, 146, 106484.	11.0	18
30	Review on recent advances in securing the long-term durability of calcium aluminate cement (CAC)-based systems. Functional Composites and Structures, 2021, 3, 035002.	3.4	17
31	Influence of water ingress on the electrical properties and electromechanical sensing capabilities of CNT/cement composites. Journal of Building Engineering, 2021, 42, 103065.	3.4	15
32	Internal carbonation of belite-rich Portland cement: An in-depth observation at the interaction of the belite phase with sodium bicarbonate. Journal of Building Engineering, 2021, 44, 102907.	3.4	2
33	Hydration properties of alkali-activated fly ash/slag binders modified by MgO with different reactivity. Journal of Building Engineering, 2021, 44, 103252.	3.4	14
34	The Effects of NaOH Concentration on the Hydrothermal Synthesis of a Hydroxyapatite–Zeolite Composite Using Blast Furnace Slag. Minerals (Basel, Switzerland), 2021, 11, 21.	2.0	7
35	Modeling the Effect of Alternative Cementitious Binders in Ultra-High-Performance Concrete. Materials, 2021, 14, 7333.	2.9	6
36	Role of Al in the crystal growth of alkali-activated fly ash and slag under a hydrothermal condition. Construction and Building Materials, 2020, 239, 117842.	7.2	15

#	Article	IF	Citations
37	Structural evolution of binder gel in alkali-activated cements exposed to electrically accelerated leaching conditions. Journal of Hazardous Materials, 2020, 387, 121825.	12.4	14
38	Thermal behavior of alkali-activated fly ash/slag with the addition of an aerogel as an aggregate replacement. Cement and Concrete Composites, 2020, 106, 103462.	10.7	33
39	Effects of biological admixtures on hydration and mechanical properties of Portland cement paste. Construction and Building Materials, 2020, 235, 117461.	7.2	19
40	Simulating the carbonation of calcium sulfoaluminate cement blended with supplementary cementitious materials. Journal of CO2 Utilization, 2020, 41, 101286.	6.8	15
41	Formation of shlykovite and ASR-P1 in concrete under accelerated alkali-silica reaction at 60 and 80°C. Cement and Concrete Research, 2020, 137, 106213.	11.0	39
42	CO2 Uptake and Physicochemical Properties of Carbonation-Cured Ternary Blend Portland Cement–Metakaolin–Limestone Pastes. Materials, 2020, 13, 4656.	2.9	19
43	Parametric modeling of autogenous shrinkage of sodium silicate-activated slag. Construction and Building Materials, 2020, 262, 120747.	7.2	10
44	Defect identification in composite materials via thermography and deep learning techniques. Composite Structures, 2020, 246, 112405.	5.8	79
45	Effect of carbonyl iron powder incorporation on the piezoresistive sensing characteristics of CNT-based polymeric sensor. Composite Structures, 2020, 244, 112260.	5.8	37
46	On the quantification of degrees of reaction and hydration of sodium silicate-activated slag cements. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	6
47	Hydration kinetics modeling of sodium silicate-activated slag: A comparative study. Construction and Building Materials, 2020, 242, 118144.	7.2	17
48	Effect of CaO incorporation on the microstructure and autogenous shrinkage of ternary blend Portland cement-slag-silica fume. Construction and Building Materials, 2020, 249, 118691.	7.2	27
49	Characterization of blast furnace slag-blended Portland cement for immobilization of Co. Cement and Concrete Research, 2020, 134, 106089.	11.0	26
50	Hydration kinetics and products of MgO-activated blast furnace slag. Construction and Building Materials, 2020, 249, 118700.	7.2	46
51	Impact of Bio-Carrier Immobilized with Marine Bacteria on Self-Healing Performance of Cement-Based Materials. Materials, 2020, 13, 4164.	2.9	9
52	Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art. Composite Structures, 2019, 227, 111244.	5.8	95
53	Effect of CaSO4 on hydration and phase conversion of calcium aluminate cement. Construction and Building Materials, 2019, 224, 40-47.	7.2	31
54	The Effects of Temperature on the Hydrothermal Synthesis of Hydroxyapatite-Zeolite Using Blast Furnace Slag. Materials, 2019, 12, 2131.	2.9	11

#	Article	IF	Citations
55	Multi-level homogenization for the prediction of the mechanical properties of ultra-high-performance concrete. Construction and Building Materials, 2019, 229, 116797.	7.2	33
56	Automated generation of carbon nanotube morphology in cement composite via data-driven approaches. Composites Part B: Engineering, 2019, 167, 51-62.	12.0	20
57	Effect of CaSO4 Incorporation on Pore Structure and Drying Shrinkage of Alkali-Activated Binders. Materials, 2019, 12, 1673.	2.9	14
58	Calcined Oyster Shell Powder as an Expansive Additive in Cement Mortar. Materials, 2019, 12, 1322.	2.9	51
59	Utilization of Calcium Carbide Residue Using Granulated Blast Furnace Slag. Materials, 2019, 12, 3511.	2.9	17
60	Enhancement of the modulus of compression of calcium silicate hydrates via covalent synthesis of CNT and silica fume. Construction and Building Materials, 2019, 198, 218-225.	7.2	12
61	Evolution of zeolite crystals in geopolymer-supported zeolites: effects of composition of starting materials. Materials Letters, 2019, 239, 33-36.	2.6	27
62	A computational framework for quantifying reactivity of fly ash in cement pastes from backscattered electron images. Construction and Building Materials, 2019, 200, 630-636.	7.2	10
63	Silica aerogel derived from rice husk: an aggregate replacer for lightweight and thermally insulating cement-based composites. Construction and Building Materials, 2019, 195, 312-322.	7.2	57
64	Evolution of the binder gel in carbonation-cured Portland cement in an acidic medium. Cement and Concrete Research, 2018, 109, 81-89.	11.0	49
65	Bond characteristics of SFRP composites containing FRP core/anchors coated on geopolymer mortar. Composite Structures, 2018, 189, 435-442.	5.8	7
66	Thermal evolution of hydrates in carbonation-cured Portland cement. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	28
67	Pull-off bond behavior of anchored random-chopped FRP composites bonded to concrete. Composite Structures, 2018, 185, 193-202.	5.8	7
68	Unlocking the role of MgO in the carbonation of alkali-activated slag cement. Inorganic Chemistry Frontiers, 2018, 5, 1661-1670.	6.0	66
69	Synthesis of geopolymer-supported zeolites via robust one-step method and their adsorption potential. Journal of Hazardous Materials, 2018, 353, 522-533.	12.4	90
70	Binder chemistry of sodium carbonate-activated CFBC fly ash. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	22
71	Synergistic effects of carbon nanotubes and carbon fibers on heat generation and electrical characteristics of cementitious composites. Carbon, 2018, 134, 283-292.	10.3	46
72	Effect of nano-silica on hydration and conversion of calcium aluminate cement. Construction and Building Materials, 2018, 169, 819-825.	7.2	59

#	Article	IF	Citations
73	Utilization of circulating fluidized bed combustion ash in producing controlled low-strength materials with cement or sodium carbonate as activator. Construction and Building Materials, 2018, 159, 642-651.	7.2	44
74	Effect of superplasticizer type and siliceous materials on the dispersion of carbon nanotube in cementitious composites. Composite Structures, 2018, 185, 264-272.	5.8	49
75	CO2 Uptake of Carbonation-Cured Cement Blended with Ground Volcanic Ash. Materials, 2018, 11, 2187.	2.9	23
76	Pressure-Induced Geopolymerization in Alkali-Activated Fly Ash. Sustainability, 2018, 10, 3538.	3.2	14
77	Effect of MgO on chloride penetration resistance of alkali-activated binder. Construction and Building Materials, 2018, 178, 584-592.	7.2	32
78	Piezoresistive characteristics of CNT fiber-incorporated GFRP composites prepared with diversified fabrication schemes. Composite Structures, 2018, 203, 835-843.	5.8	12
79	Ureolytic/Non-Ureolytic Bacteria Co-Cultured Self-Healing Agent for Cementitious Materials Crack Repair. Materials, 2018, 11, 782.	2.9	40
80	Fabrication and design of electromagnetic wave absorber composed of carbon nanotube-incorporated cement composites. Composite Structures, 2018, 206, 439-447.	5.8	42
81	Carbonation-induced weathering effect on cesium retention of cement paste. Journal of Nuclear Materials, 2018, 505, 159-164.	2.7	29
82	Autogenous shrinkage and electrical characteristics of cement pastes and mortars with carbon nanotube and carbon fiber. Construction and Building Materials, 2018, 177, 428-435.	7.2	46
83	Adsorption characteristics of cesium onto mesoporous geopolymers containing nano-crystalline zeolites. Microporous and Mesoporous Materials, 2017, 242, 238-244.	4.4	81
84	Flexural stress and crack sensing capabilities of MWNT/cement composites. Composite Structures, 2017, 175, 86-100.	5.8	67
85	Alkali activated slag pastes with surface-modified blast furnace slag. Cement and Concrete Composites, 2017, 76, 39-47.	10.7	26
86	Influences of CNT dispersion and pore characteristics on the electrical performance of cementitious composites. Composite Structures, 2017, 164, 32-42.	5.8	96
87	Circulating fluidized bed combustion ash as controlled low-strength material (CLSM) by alkaline activation. Construction and Building Materials, 2017, 156, 728-738.	7.2	39
88	Stable conversion of metastable hydrates in calcium aluminate cement by early carbonation curing. Journal of CO2 Utilization, 2017, 21, 224-226.	6.8	47
89	Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber. Cement and Concrete Composites, 2017, 82, 165-175.	10.7	77
90	Mechanical properties and piezoresistive sensing capabilities of FRP composites incorporating CNT fibers. Composite Structures, 2017, 178, 1-8.	5.8	37

#	Article	IF	Citations
91	Stability of MgO-modified geopolymeric gel structure exposed to a CO2-rich environment. Construction and Building Materials, 2017, 151, 178-185.	7.2	18
92	Structural strengthening and damage behaviors of hybrid sprayed fiber-reinforced polymer composites containing carbon fiber cores. International Journal of Damage Mechanics, 2017, 26, 358-376.	4.2	17
93	Cesium and Strontium Retentions Governed by Aluminosilicate Gel in Alkali-Activated Cements. Materials, 2017, 10, 447.	2.9	21
94	Flow Property of Alkali-Activated Slag with Modified Precursor. ACI Materials Journal, 2017, 114, .	0.2	4
95	An NMR Spectroscopic Investigation of Aluminosilicate Gel in Alkali-Activated Fly Ash in a CO2-Rich Environment. Materials, 2016, 9, 308.	2.9	32
96	Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. Journal of Hazardous Materials, 2016, 318, 339-346.	12.4	61
97	Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex. Construction and Building Materials, 2016, 113, 264-272.	7.2	74
98	Synergistic effect of MWNT/fly ash incorporation on the EMI shielding/absorbing characteristics of cementitious materials. Construction and Building Materials, 2016, 115, 651-661.	7.2	50
99	Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment. Microporous and Mesoporous Materials, 2016, 229, 22-30.	4.4	105
100	Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials. Construction and Building Materials, 2016, 127, 762-773.	7.2	209
101	Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures. Cement and Concrete Research, 2016, 89, 72-79.	11.0	155
102	Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste. Cement and Concrete Composites, 2016, 72, 168-179.	10.7	176
103	Internal-curing efficiency of cold-bonded coal bottom ash aggregate for high-strength mortar. Construction and Building Materials, 2016, 126, 1-8.	7.2	46
104	The electrically conductive carbon nanotube (CNT)/cement composites for accelerated curing and thermal cracking reduction. Composite Structures, 2016, 158, 20-29.	5.8	53
105	Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures. Cement and Concrete Composites, 2016, 72, 27-38.	10.7	67
106	Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement. Cement and Concrete Research, 2016, 82, 50-57.	11.0	220
107	Effect of fly ash characteristics on delayed high-strength development of geopolymers. Construction and Building Materials, 2016, 102, 260-269.	7.2	82
108	Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites. Composite Structures, 2016, 136, 162-170.	5.8	110

#	Article	IF	Citations
109	Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites. Smart Structures and Systems, 2016, 18, 217-231.	1.9	44
110	Strength Development of Alkali-Activated Fly Ash Exposed to a Carbon Dioxide-Rich Environment at an Early Age. Journal of the Korean Ceramic Society, 2016, 53, 18-23.	2.3	9
111	Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix. International Journal of Concrete Structures and Materials, 2015, 9, 427-438.	3.2	23
112	Coal bottom ash in field of civil engineering: A review of advanced applications and environmental considerations. KSCE Journal of Civil Engineering, 2015, 19, 1802-1818.	1.9	83
113	The influence of sodium hydrogen carbonate on the hydration of cement. Construction and Building Materials, 2015, 94, 746-749.	7.2	33
114	Interfacial crack-induced debonding behavior of sprayed FRP laminate bonded to RC beams. Composite Structures, 2015, 128, 176-187.	5.8	15
115	Reactivity and reaction products of alkali-activated, fly ash/slag paste. Construction and Building Materials, 2015, 81, 303-312.	7.2	192
116	Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash. International Journal of Concrete Structures and Materials, 2015, 9, 283-294.	3.2	44
117	Interfacial bond behavior of FRP fabrics bonded to fiber-reinforced geopolymer mortar. Composite Structures, 2015, 134, 353-368.	5.8	25
118	Advanced Spray Multiple Layup Process for Quality Control of Sprayed FRP Composites Used to Retrofit Concrete Structures. Journal of Construction Engineering and Management - ASCE, 2015, 141, 04014060.	3.8	8
119	An experimental study on sag-resistance ability and applicability of sprayed FRP system on vertical and overhead concrete surfaces. Materials and Structures/Materiaux Et Constructions, 2015, 48, 21-33.	3.1	14
120	Thermo-mechanical analysis of road structures used in the on-line electric vehicle system. Structural Engineering and Mechanics, 2015, 53, 519-536.	1.0	4
121	Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Construction and Building Materials, 2014, 50, 169-176.	7.2	243
122	Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Composite Structures, 2014, 107, 60-69.	5.8	280
123	Mechanical characteristics and strengthening effectiveness of random-chopped FRP composites containing air voids. Composites Part B: Engineering, 2014, 62, 159-166.	12.0	29
124	Strain rate and adhesive energy dependent viscoplastic damage modeling for nanoparticulate composites: Molecular dynamics and micromechanical simulations. Applied Physics Letters, 2014, 104, 101901.	3.3	13
125	Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cement and Concrete Composites, 2014, 53, 239-248.	10.7	309
126	Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low waterâ€"binder ratio. Composite Structures, 2014, 116, 713-719.	5.8	178

#	Article	IF	Citations
127	Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products. Construction and Building Materials, 2013, 49, 738-746.	7.2	73
128	Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 2013, 47, 1201-1209.	7.2	493
129	Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Construction and Building Materials, 2013, 38, 1073-1082.	7.2	120
130	Bond characteristics of sprayed FRP composites bonded to concrete substrate considering various concrete surface conditions. Composite Structures, 2013, 100, 270-279.	5.8	25
131	A combined molecular dynamics/micromechanics/finite element approach for multiscale constitutive modeling of nanocomposites with interface effects. Applied Physics Letters, 2013, 103, .	3.3	27
132	Predictions of viscoelastic strain rate dependent behavior of fiber-reinforced polymeric composites. Composite Structures, 2012, 94, 1420-1429.	5.8	38
133	Flow, water absorption, and mechanical characteristics of normal- and high-strength mortar incorporating fine bottom ash aggregates. Construction and Building Materials, 2012, 26, 249-256.	7.2	75
134	Influence of silica fume additions on electromagnetic interference shielding effectiveness of multi-walled carbon nanotube/cement composites. Construction and Building Materials, 2012, 30, 480-487.	7.2	109
135	Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1110-1118.	7.6	128
136	Behavior and performance of RC T-section deep beams externally strengthened in shear with CFRP sheets. Composite Structures, 2011, 93, 911-922.	5.8	66
137	Shear Behavior and Performance of Deep Beams Reinforced with a Honeycomb Steel Mesh. Advances in Structural Engineering, 2010, 13, 989-999.	2.4	3
138	Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films. Synthetic Metals, 2010, 160, 1838-1842.	3.9	84
139	3D-Damage Model for Fiber-Reinforced Brittle Composites with Microcracks and Imperfect Interfaces. Journal of Engineering Mechanics - ASCE, 2009, 135, 1108-1118.	2.9	18
140	Numerical evaluation of shear strengthening performance of CFRP sheets/strips and sprayed epoxy coating repair systems. Composites Part B: Engineering, 2008, 39, 851-862.	12.0	24
141	Effectiveness of Retrofitting Damaged Concrete Beams with Sprayed Fiber-reinforced Polymer Coating. Journal of Reinforced Plastics and Composites, 2008, 27, 1269-1286.	3.1	18
142	Numerical characterization of compressive response and damage evolution in laminated plates containing a cutout. Composites Science and Technology, 2007, 67, 2221-2230.	7.8	25
143	Micromechanics-based constitutive modeling for unidirectional laminated composites. International Journal of Solids and Structures, 2006, 43, 5674-5689.	2.7	31
144	Autogenous shrinkage of concrete containing granulated blast-furnace slag. Cement and Concrete Research, 2006, 36, 1279-1285.	11.0	206

#	Article	IF	CITATION
145	Numerical study on retrofit and strengthening performance of sprayed fiber reinforced polymer. Engineering Structures, 2005, 27, 1476-1487.	5.3	11
146	Effectiveness of Anchorage in Concrete Beams Retrofitted with Sprayed Fiber-reinforced Polymers. Journal of Reinforced Plastics and Composites, 2004, 23, 1285-1300.	3.1	15
147	Structural repair and strengthening of damaged RC beams with sprayed FRP. Composite Structures, 2004, 63, 201-209.	5.8	40
148	A damage constitutive model of progressive debonding in aligned discontinuous fiber composites. International Journal of Solids and Structures, 2001, 38, 875-895.	2.7	57
149	Modeling of progressive damage in aligned and randomly oriented discontinuous fiber polymer matrix composites. Composites Part B: Engineering, 2000, 31, 77-86.	12.0	45