Thomas Jespersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/753785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adiposity-associated atrial fibrillation: molecular determinants, mechanisms, and clinical significance. Cardiovascular Research, 2023, 119, 614-630.	3.8	15
2	Usefulness of left atrial strain for predicting incident atrial fibrillation and ischaemic stroke in the general population. European Heart Journal Cardiovascular Imaging, 2022, 23, 363-371.	1.2	28
3	Antiâ€arrhythmic investigations in large animal models of atrial fibrillation. British Journal of Pharmacology, 2022, 179, 838-858.	5.4	14
4	Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovascular Research, 2022, 118, 2415-2427.	3.8	45
5	Pharmacological inhibition of acetylcholine-regulated potassium current (IK,ACh) prevents atrial arrhythmogenic changes in a rat model of repetitive obstructive respiratory events. Heart Rhythm O2, 2022, 3, 97-104.	1.7	2
6	Sleep apnea and atrial fibrillation: challenges in clinical and translational research. Expert Review of Cardiovascular Therapy, 2022, 20, 101-109.	1.5	9
7	Clinical Implications of <i>SCN10A</i> Loss-of-Function Variants in 169 610 Exomes Representing the General Population. Circulation Genomic and Precision Medicine, 2022, 15, CIRCCEN121003574.	3.6	1
8	Muscarinic Receptor Activation Reduces Force and Arrhythmias in Human Atria Independent of IK,ACh. Journal of Cardiovascular Pharmacology, 2022, 79, 678-686.	1.9	4
9	Mechanisms and Therapeutic Opportunities in Atrial Fibrillation in Relationship to Alcohol Use and Abuse. Canadian Journal of Cardiology, 2022, 38, 1352-1363.	1.7	8
10	Electrocardiographic characteristics of trained and untrained standardbred racehorses. Journal of Veterinary Internal Medicine, 2022, 36, 1119-1130.	1.6	9
11	Necropsy Validation of a Novel Method for Left Ventricular Mass Quantification in Porcine Transthoracic and Transdiaphragmal Echocardiography. Frontiers in Cardiovascular Medicine, 2022, 9, 868603.	2.4	0
12	The impact of an atrial septal defect on the progression of atrial tachypacing-induced atrial fibrillation in a Danish Landrace pig: A case report. IJC Heart and Vasculature, 2022, 40, 101054.	1.1	0
13	Implantable loop recorders can detect paroxysmal atrial fibrillation in Standardbred racehorses with intermittent poor performance. Equine Veterinary Journal, 2021, 53, 955-963.	1.7	12
14	First catheterâ€based highâ€density endocardial 3D electroanatomical mapping of the right atrium in standing horses. Equine Veterinary Journal, 2021, 53, 186-193.	1.7	12
15	Detection of atrial fibrillation with implantable loop recorders in horses. Equine Veterinary Journal, 2021, 53, 397-403.	1.7	11
16	Cause-specific mortality in children and young adults with diabetes mellitus: A Danish nationwide cohort study. European Journal of Preventive Cardiology, 2021, 28, 159-165.	1.8	28
17	A novel approach for obtaining 12â€lead electrocardiograms in horses. Journal of Veterinary Internal Medicine, 2021, 35, 521-531.	1.6	12
18	Repeated exposure to transient obstructive sleep apnea–related conditions causes an atrial fibrillation substrate in a chronic rat model. Heart Rhythm, 2021, 18, 455-464.	0.7	26

#	Article	IF	CITATIONS
19	Inhibition of Small-Conductance Calcium-Activated Potassium Current (IK,Ca) Leads to Differential Atrial Electrophysiological Effects in a Horse Model of Persistent Atrial Fibrillation. Frontiers in Physiology, 2021, 12, 614483.	2.8	9
20	Change in global longitudinal strain following acute coronary syndrome and subsequent risk of heart failure. International Journal of Cardiovascular Imaging, 2021, 37, 3193-3202.	1.5	0
21	Effective termination of atrial fibrillation by SK channel inhibition is associated with a sudden organization of fibrillatory conduction. Europace, 2021, 23, 1847-1859.	1.7	9
22	Age-dependent transition from islet insulin hypersecretion to hyposecretion in mice with the long QT-syndrome loss-of-function mutation Kcnq1-A340V. Scientific Reports, 2021, 11, 12253.	3.3	10
23	Personalized management of sleep apnea in patients with atrial fibrillation: An interdisciplinary and translational challenge. IJC Heart and Vasculature, 2021, 35, 100843.	1.1	0
24	Arrhythmogenic mechanisms of acute obstructive respiratory events in a porcine model of drug-induced long QT. Heart Rhythm, 2021, 18, 1384-1391.	0.7	10
25	Increased fibroblast accumulation in the equine heart following persistent atrial fibrillation. IJC Heart and Vasculature, 2021, 35, 100842.	1.1	5
26	[68Ca]Ga-NODAGA-E[(cRGDyK)]2 Angiogenesis PET/MR in a Porcine Model of Chronic Myocardial Infarction. Diagnostics, 2021, 11, 1807.	2.6	4
27	Myocardial performance index by tissue Doppler echocardiography predicts adverse events in patients with atrial fibrillation. European Heart Journal Cardiovascular Imaging, 2020, 21, 560-566.	1.2	5
28	The gut microbial-derived metabolite trimethylamine N-oxide: A missing link between lifestyle-components and atrial fibrillation?. IJC Heart and Vasculature, 2020, 29, 100581.	1.1	1
29	Inhibition of sodium-proton-exchanger subtype 3-mediated sodium absorption in the gut: A new antihypertensive concept. IJC Heart and Vasculature, 2020, 29, 100591.	1.1	9
30	In vivo knockdown of SK3 channels using antisense oligonucleotides protects against atrial fibrillation in rats. Journal of Molecular and Cellular Cardiology, 2020, 147, 18-26.	1.9	5
31	Pharmacological inhibition of sodium-proton-exchanger subtype 3-mediated sodium absorption in the gut reduces atrial fibrillation susceptibility in obese spontaneously hypertensive rats. IJC Heart and Vasculature, 2020, 28, 100534.	1.1	4
32	Urinary markers of nucleic acid oxidation increase with age, obesity and insulin resistance in Danish children and adolescents. Free Radical Biology and Medicine, 2020, 155, 81-86.	2.9	8
33	Inhibition of Adenosine Pathway Alters Atrial Electrophysiology and Prevents Atrial Fibrillation. Frontiers in Physiology, 2020, 11, 493.	2.8	12
34	Effect of the antipsychotic drug haloperidol on arrhythmias during acute myocardial infarction in a porcine model. IJC Heart and Vasculature, 2020, 26, 100455.	1.1	2
35	Pulmonary vein firing initiating atrial fibrillation in the horse: Oversized dimensions but similar mechanisms. Journal of Cardiovascular Electrophysiology, 2020, 31, 1211-1212.	1.7	24
36	Comparison of hemodynamics, cardiac electrophysiology, and ventricular arrhythmia in an open- and a closed-chest porcine model of acute myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H391-H400.	3.2	10

#	Article	IF	CITATIONS
37	Early Systolic Lengthening in Patients With STâ€Segment–Elevation Myocardial Infarction: A Novel Predictor of Cardiovascular Events. Journal of the American Heart Association, 2020, 9, e013835.	3.7	13
38	The Acetylcholine-Activated Potassium Current Inhibitor XAF-1407 Terminates Persistent Atrial Fibrillation in Goats. Frontiers in Pharmacology, 2020, 11, 608410.	3.5	10
39	Effect of selective <i>I</i> _{K,ACh} inhibition by XAFâ€1407 in an equine model of tachypacingâ€induced persistent atrial fibrillation. British Journal of Pharmacology, 2020, 177, 3778-3794.	5.4	26
40	Arrhythmia development during inhibition of small-conductance calcium-activated potassium channels in acute myocardial infarction in a porcine model. Europace, 2019, 21, 1584-1593.	1.7	13
41	The KCa2 Channel Inhibitor AP14145, But Not Dofetilide or Ondansetron, Provides Functional Atrial Selectivity in Guinea Pig Hearts. Frontiers in Pharmacology, 2019, 10, 668.	3.5	10
42	Longitudinal study of electrical, functional and structural remodelling in an equine model of atrial fibrillation. BMC Cardiovascular Disorders, 2019, 19, 228.	1.7	33
43	Impact of arrhythmogenic calmodulin variants on small conductance Ca ²⁺ â€activated K ⁺ (SK3) channels. Physiological Reports, 2019, 7, e14210.	1.7	8
44	Effects of dofetilide and ranolazine on atrial fibrillatory rate in a horse model of acutely induced atrial fibrillation. Journal of Cardiovascular Electrophysiology, 2019, 30, 596-606.	1.7	14
45	Utility of left atrial strain for predicting atrial fibrillation following ischemic stroke. International Journal of Cardiovascular Imaging, 2019, 35, 1605-1613.	1.5	27
46	Associations between thyroid-stimulating hormone, blood pressure and adiponectin are attenuated in children and adolescents with overweight or obesity. Journal of Pediatric Endocrinology and Metabolism, 2019, 32, 1351-1358.	0.9	2
47	Ventricular Arrhythmias in First Acute Myocardial Infarction: Epidemiology, Mechanisms, and Interventions in Large Animal Models. Frontiers in Cardiovascular Medicine, 2019, 6, 158.	2.4	53
48	Amiodarone Treatment in the Early Phase of Acute Myocardial Infarction Protects Against Ventricular Fibrillation in a Porcine Model. Journal of Cardiovascular Translational Research, 2019, 12, 321-330.	2.4	15
49	A Novel <i>SCN5A</i> Variant Associated with Abnormal Repolarization, Atrial Fibrillation, and Reversible Cardiomyopathy. Cardiology, 2018, 140, 8-13.	1.4	3
50	Next-generation sequencing of AV nodal reentrant tachycardia patients identifies broad spectrum of variants in ion channel genes. European Journal of Human Genetics, 2018, 26, 660-668.	2.8	12
51	The sodium channel activator Lu AE98134 normalizes the altered firing properties of fast spiking interneurons in Dlx5/6+/â^' mice. Neuroscience Letters, 2018, 662, 29-35.	2.1	5
52	Regulation of Kv1.4 potassium channels by PKC and AMPK kinases. Channels, 2018, 12, 34-44.	2.8	8
53	Antiarrhythmic Effects of Combining Dofetilide and Ranolazine in a Model of Acutely Induced Atrial Fibrillation in Horses. Journal of Cardiovascular Pharmacology, 2018, 71, 26-35.	1.9	18
54	Effect of induced chronic atrial fibrillation on exercise performance in Standardbred trotters. Journal of Veterinary Internal Medicine, 2018, 32, 1410-1419.	1.6	28

#	Article	IF	CITATIONS
55	Inhibition of Small Conductance Calcium-Activated Potassium (SK) Channels Prevents Arrhythmias in Rat Atria During β-Adrenergic and Muscarinic Receptor Activation. Frontiers in Physiology, 2018, 9, 510.	2.8	22
56	Timeâ€dependent antiarrhythmic effects of flecainide on induced atrial fibrillation in horses. Journal of Veterinary Internal Medicine, 2018, 32, 1708-1717.	1.6	13
57	Pharmacological rescue of mutated Kv3.1 ion-channel linked to progressive myoclonus epilepsies. European Journal of Pharmacology, 2018, 833, 255-262.	3.5	12
58	Patients With Long-QT Syndrome Caused by Impaired <i>hERG</i> -Encoded K _v 11.1 Potassium Channel Have Exaggerated Endocrine Pancreatic and Incretin Function Associated With Reactive Hypoglycemia. Circulation, 2017, 135, 1705-1719.	1.6	33
59	Kv3.1/Kv3.2 channel positive modulators enable faster activating kinetics and increase firing frequency in fast-spiking GABAergic interneurons. Neuropharmacology, 2017, 118, 102-112.	4.1	37
60	Rat Models of Ventricular Fibrillation Following Acute Myocardial Infarction. Journal of Cardiovascular Pharmacology and Therapeutics, 2017, 22, 514-528.	2.0	16
61	Pharmacological blockade of small conductance Ca2+-activated K+ channels by ICA reduces arrhythmic load in rats with acute myocardial infarction. Pflugers Archiv European Journal of Physiology, 2017, 469, 739-750.	2.8	13
62	Termination of Vernakalant-Resistant Atrial Fibrillation by Inhibition of Small-Conductance Ca ²⁺ -Activated K ⁺ Channels in Pigs. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	4.8	62
63	Electrophysiologic effects of the <i>I</i> _K ₁ inhibitor PA-6 are modulated by extracellular potassium in isolated guinea pig hearts. Physiological Reports, 2017, 5, e13120.	1.7	13
64	Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis. Nature Communications, 2017, 8, 1289.	12.8	33
65	Stability of Circulating Blood-Based MicroRNAs – Pre-Analytic Methodological Considerations. PLoS ONE, 2017, 12, e0167969.	2.5	247
66	Effect of flecainide on atrial fibrillatory rate in a large animal model with induced atrial fibrillation. BMC Cardiovascular Disorders, 2017, 17, 289.	1.7	16
67	A Multiple Kernel Learning Framework to Investigate the Relationship Between Ventricular Fibrillation and First Myocardial Infarction. Lecture Notes in Computer Science, 2017, , 161-171.	1.3	2
68	From CMR Image to Patient-Specific Simulation and Population-Based Analysis: Tutorial for an Openly Available Image-Processing Pipeline. Lecture Notes in Computer Science, 2017, , 106-117.	1.3	2
69	The Arrhythmogenic Calmodulin Mutation D129G Dysregulates Cell Growth, Calmodulin-dependent Kinase II Activity, and Cardiac Function in Zebrafish. Journal of Biological Chemistry, 2016, 291, 26636-26646.	3.4	24
70	Refractoriness in human atria: Time and voltage dependence of sodium channel availability. Journal of Molecular and Cellular Cardiology, 2016, 101, 26-34.	1.9	35
71	Antiarrhythmic effect of the Ca2+-activated K+ (SK) channel inhibitor ICA combined with either amiodarone or dofetilide in an isolated heart model of atrial fibrillation. Pflugers Archiv European Journal of Physiology, 2016, 468, 1853-1863.	2.8	13
72	Pharmacological inhibition of <i>I</i> _K ₁ by PA-6 in isolated rat hearts affects ventricular repolarization and refractoriness. Physiological Reports, 2016, 4, e12734.	1.7	7

#	Article	IF	CITATIONS
73	Pharmacological exploration of the resting membrane potential reserve: Impact on atrial fibrillation. European Journal of Pharmacology, 2016, 771, 56-64.	3.5	11
74	Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis. Cardiovascular Diabetology, 2015, 14, 87.	6.8	45
75	Antiarrhythmic Effect of Either Negative Modulation or Blockade of Small Conductance Ca2+-activated K+ Channels on Ventricular Fibrillation in Guinea Pig Langendorff-perfused Heart. Journal of Cardiovascular Pharmacology, 2015, 66, 294-299.	1.9	15
76	Antiarrhythmic Mechanisms of SK Channel Inhibition in the Rat Atrium. Journal of Cardiovascular Pharmacology, 2015, 66, 165-176.	1.9	27
77	The role of the sodium current complex in a nonreferred nationwide cohort of sudden infant death syndrome. Heart Rhythm, 2015, 12, 1241-1249.	0.7	26
78	Synergistic antiarrhythmic effect of combining inhibition of Ca2+-activated K+ (SK) channels and voltage-gated Na+ channels in an isolated heart model of atrial fibrillation. Heart Rhythm, 2015, 12, 409-418.	0.7	28
79	Common and Rare Variants in SCN10A Modulate the Risk of Atrial Fibrillation. Circulation: Cardiovascular Genetics, 2015, 8, 64-73.	5.1	50
80	Pharmacologic inhibition of small-conductance calcium-activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses. Heart Rhythm, 2015, 12, 825-835.	0.7	70
81	Biophysical characterization of KV3.1 potassium channel activating compounds. European Journal of Pharmacology, 2015, 758, 164-170.	3.5	20
82	Combined gating and trafficking defect in Kv11.1 manifests as a malignant long QT syndrome phenotype in a large Danish p.F29L founder family. Scandinavian Journal of Clinical and Laboratory Investigation, 2015, 75, 699-709.	1.2	8
83	PKC and AMPK regulation of Kv1.5 potassium channels. Channels, 2015, 9, 121-128.	2.8	27
84	Common and Rare Variants in <i>SCN10A</i> Modulate the Risk of Atrial Fibrillation. Circulation: Cardiovascular Genetics, 2015, 8, 64-73.	5.1	59
85	Late Sodium Current in Human Atrial Cardiomyocytes from Patients in Sinus Rhythm and Atrial Fibrillation. PLoS ONE, 2015, 10, e0131432.	2.5	70
86	Biophysical characterization of inwardly rectifying potassium currents (I(K1) I(K,ACh), I(K,Ca)) using sinus rhythm or atrial fibrillation action potential waveforms. General Physiology and Biophysics, 2015, 34, 383-92.	0.9	8
87	Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovascular Research, 2014, 103, 156-167.	3.8	168
88	Investigations of the Na _v β1b sodium channel subunit in human ventricle; functional characterization of the H162P Brugada syndrome mutant. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1204-H1212.	3.2	25
89	G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization. Cardiovascular Research, 2014, 101, 175-184.	3.8	33
90	Flecainide Provocation Reveals Concealed Brugada Syndrome in a Long QT Syndrome Family With a Novel L1786Q Mutation in SCN5A. Circulation Journal, 2014, 78, 1136-1143.	1.6	22

#	Article	IF	CITATIONS
91	A Phosphoinositide 3-Kinase (PI3K)-serum- and glucocorticoid-inducible Kinase 1 (SCK1) Pathway Promotes Kv7.1 Channel Surface Expression by Inhibiting Nedd4-2 Protein. Journal of Biological Chemistry, 2013, 288, 36841-36854.	3.4	34
92	Double Mutation at the Putative Protein Kinase C Phosphorylation Sites Thr ¹⁵¹ Plus Thr ³²³ in the Mouse LeukotrieneD ₄ Receptor Eliminates Homologous Desensitization. Cellular Physiology and Biochemistry, 2013, 31, 366-378.	1.6	3
93	GIRK Channel Activation Via Adenosine or Muscarinic Receptors Has Similar Effects on Rat Atrial Electrophysiology. Journal of Cardiovascular Pharmacology, 2013, 62, 192-198.	1.9	21
94	The Role of <i>CAV3</i> in Long–QT Syndrome. Circulation: Cardiovascular Genetics, 2013, 6, 452-461.	5.1	27
95	High Prevalence of Long QT Syndrome–Associated <i>SCN5A</i> Variants in Patients With Early-Onset Lone Atrial Fibrillation. Circulation: Cardiovascular Genetics, 2012, 5, 450-459.	5.1	129
96	Attenuated Ventricular β-Adrenergic Response and Reduced Repolarization Reserve in a Rabbit Model of Chronic Heart Failure. Journal of Cardiovascular Pharmacology, 2012, 59, 142-150.	1.9	9
97	The Prevalence of Mutations in <i>KCNQ1, KCNH2,</i> and <i>SCN5A</i> in an Unselected National Cohort of Young Sudden Unexplained Death Cases. Journal of Cardiovascular Electrophysiology, 2012, 23, 1092-1098.	1.7	69
98	Deubiquitylating enzyme USP2 counteracts Nedd4-2–mediated downregulation of KCNQ1 potassium channels. Heart Rhythm, 2012, 9, 440-448.	0.7	34
99	Functionally Selective AT1Receptor Activation Reduces Ischemia Reperfusion Injury. Cellular Physiology and Biochemistry, 2012, 30, 642-652.	1.6	16
100	AMPâ€Activated Protein Kinase Downregulates Kv7.1 Cell Surface Expression. Traffic, 2012, 13, 143-156.	2.7	36
101	A Novel Nonsense Variant in Nav1.5 Cofactor MOG1 Eliminates Its Sodium Current Increasing Effect and May Increase the Risk of Arrhythmias. Canadian Journal of Cardiology, 2011, 27, 523.e17-523.e23.	1.7	45
102	Comparison of the Effects of a Transient Outward Potassium Channel Activator on Currents Recorded from Atrial and Ventricular Cardiomyocytes. Journal of Cardiovascular Electrophysiology, 2011, 22, 1057-1066.	1.7	30
103	Regulation and physiological function of Na _v 1.5 and KCNQ1 channels. Acta Physiologica, 2011, 202, 1-26.	3.8	3
104	Characterization of cardiac repolarization in the Göttingen minipig. Journal of Pharmacological and Toxicological Methods, 2011, 63, 186-195.	0.7	23
105	Keeping the rhythm — Pro-arrhythmic investigations in isolated Göttingen minipig hearts. Journal of Pharmacological and Toxicological Methods, 2011, 64, 134-144.	0.7	11
106	Effects on Atrial Fibrillation in Aged Hypertensive Rats by Ca ²⁺ -Activated K ⁺ Channel Inhibition. Hypertension, 2011, 57, 1129-1135.	2.7	96
107	Cardiac Channelopathies and Sudden Infant Death Syndrome. Cardiology, 2011, 119, 21-33.	1.4	37
108	Mutations in sodium channel β-subunit SCN3B are associated with early-onset lone atrial fibrillation. Cardiovascular Research, 2011, 89, 786-793.	3.8	112

#	Article	IF	CITATIONS
109	Screening of KCNN3 in patients with early-onset lone atrial fibrillation. Europace, 2011, 13, 963-967.	1.7	44
110	Identification of a Kir3.4 Mutation in Congenital Long QT Syndrome. American Journal of Human Genetics, 2010, 86, 872-880.	6.2	177
111	Effect of the I _{to} activator NS5806 on cloned K _v 4 channels depends on the accessory protein KChIP2. British Journal of Pharmacology, 2010, 160, 2028-2044.	5.4	41
112	Inherited Cardiac Diseases Caused by Mutations in the Nav1.5 Sodium Channel. Journal of Cardiovascular Electrophysiology, 2010, 21, 107-115.	1.7	75
113	Sick Sinus Syndrome, Progressive Cardiac Conduction Disease, Atrial Flutter and Ventricular Tachycardia Caused by a Novel <i>SCN5A</i> Mutation. Cardiology, 2010, 115, 311-316.	1.4	21
114	Comparison of the Effects of the Transient Outward Potassium Channel Activator NS5806 on Canine Atrial and Ventricular Cardiomyocytes. Biophysical Journal, 2010, 98, 334a.	0.5	2
115	Differential effects of the transient outward K+ current activator NS5806 in the canine left ventricle. Journal of Molecular and Cellular Cardiology, 2010, 48, 191-200.	1.9	46
116	Inhibition of Small-Conductance Ca ²⁺ -Activated K ⁺ Channels Terminates and Protects Against Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 380-390.	4.8	164
117	A Novel <i>SCN5A</i> Mutation in a Patient with Coexistence of Brugada Syndrome Traits and Ischaemic Heart Disease. Case Reports in Medicine, 2009, 2009, 1-4.	0.7	1
118	Activation of big conductance Ca2+-activated K+ channels (BK) protects the heart against ischemia–reperfusion injury. Pflugers Archiv European Journal of Physiology, 2009, 457, 979-988.	2.8	84
119	Transmural expression of ion channels and transporters in human nondiseased and end-stage failing hearts. Pflugers Archiv European Journal of Physiology, 2009, 459, 11-23.	2.8	80
120	Ventricular tachycardia in a Brugada syndrome patient caused by a novel deletion in SCN5A. Canadian Journal of Cardiology, 2009, 25, 156-160.	1.7	14
121	Antiarrhythmic effect of IKr activation in a cellular model of LQT3. Heart Rhythm, 2009, 6, 100-106.	0.7	19
122	Pharmacologically Induced Long QT Type 2 Can Be Rescued by Activation of IKs With Benzodiazepine R-L3 in Isolated Guinea Pig Cardiomyocytes. Journal of Cardiovascular Pharmacology, 2009, 54, 169-177.	1.9	18
123	Characterization of hERG1a and hERG1b potassium channels—a possible role for hERG1b in the I Kr current. Pflugers Archiv European Journal of Physiology, 2008, 456, 1137-1148.	2.8	58
124	Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome. Cardiovascular Research, 2008, 78, 494-504.	3.8	37
125	The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family. Cardiovascular Research, 2007, 74, 64-74.	3.8	116
126	Electrophysiological characterization of hERG1a and hERG1b Homo- and heteromeric channels. Journal of Molecular and Cellular Cardiology, 2007, 42, S17-S18.	1.9	2

#	Article	IF	CITATIONS
127	Brugada Syndrome Unmasked by Accidental Inhalation of Gasoline Vapors. PACE - Pacing and Clinical Electrophysiology, 2007, 30, 1294-1298.	1.2	7
128	The corticosteroid hormone induced factor: A new modulator of KCNQ1 channels?. Biochemical and Biophysical Research Communications, 2006, 341, 979-988.	2.1	11
129	Subtype-specific, bi-component inhibition of SK channels by low internal pH. Biochemical and Biophysical Research Communications, 2006, 343, 943-949.	2.1	4
130	Cardiac sodium channel Nav1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1. Biochemical and Biophysical Research Communications, 2006, 348, 1455-1462.	2.1	75
131	Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins. American Journal of Physiology - Cell Physiology, 2005, 288, C692-C701.	4.6	121
132	The KCNQ1 Potassium Channel: From Gene to Physiological Function. Physiology, 2005, 20, 408-416.	3.1	224
133	The KCNQ5 potassium channel from mouse: A broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes. Molecular Brain Research, 2005, 139, 52-62.	2.3	56
134	hKCNE4 inhibits the hKCNQ1 potassium current without affecting the activation kinetics. Biochemical and Biophysical Research Communications, 2005, 328, 1146-1153.	2.1	35
135	An RNA secondary structure bias for non-homologous reverse transcriptase-mediated deletions in vivo. Nucleic Acids Research, 2004, 32, 2039-2048.	14.5	15
136	Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif. Journal of Cell Science, 2004, 117, 4517-4526.	2.0	50
137	Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype. European Journal of Human Genetics, 2004, 12, 738-743.	2.8	69
138	5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels. Journal of Neuroscience Research, 2004, 78, 845-854.	2.9	42
139	Does KCNE5 play a role in long QT syndrome?. Clinica Chimica Acta, 2004, 345, 49-53.	1.1	10
140	Transgene stability for three replication-competent murine leukemia virus vectors. Gene, 2004, 329, 61-69.	2.2	10
141	KCNQ Channels are Sensors of Cell Volume. , 2004, , 389-390.		0
142	Characterization of two new dominant ClC-1 channel mutations associated with myotonia. Muscle and Nerve, 2003, 28, 722-732.	2.2	20
143	Solid-Phase Synthesis and Biological Activity of a Thioether Analogue of Conotoxin G1. ChemBioChem, 2003, 4, 186-194.	2.6	46
144	KCNQ1 Channels Sense Small Changes in Cell Volume. Journal of Physiology, 2003, 549, 419-427.	2.9	83

#	Article	IF	CITATIONS
145	KCNE4 Is an Inhibitory Subunit to Kv1.1 and Kv1.3 Potassium Channels. Biophysical Journal, 2003, 85, 1525-1537.	0.5	58
146	Mutational library analysis of selected amino acids in the receptor binding domain of envelope of Akv murine leukemia virus by conditionally replication competent bicistronic vectors. Gene, 2003, 315, 51-61.	2.2	9
147	KCNE5 Induces Time- and Voltage-Dependent Modulation of the KCNQ1 Current. Biophysical Journal, 2002, 83, 1997-2006.	0.5	98
148	Dual-Function Vector for Protein Expression in Both Mammalian Cells and <i>Xenopus laevis</i> Oocytes. BioTechniques, 2002, 32, 536-540.	1.8	135
149	Activation of KCNQ5 channels stably expressed in HEK293 cells by BMS-204352. European Journal of Pharmacology, 2002, 437, 129-137.	3.5	62
150	KCNE4 is an inhibitory subunit to the KCNQ1 channel. Journal of Physiology, 2002, 542, 119-130.	2.9	135
151	Pharmacological modulation of SK3 channels. Neuropharmacology, 2001, 40, 879-887.	4.1	116
152	KCNQ4 channel activation by BMS-204352 and retigabine. Neuropharmacology, 2001, 40, 888-898.	4.1	114
153	An ERG Channel Inhibitor from the Scorpion Buthus eupeus. Journal of Biological Chemistry, 2001, 276, 9868-9876.	3.4	85
154	Functional Testing of a Bicistronic Retroviral Vector for Intracellular Peptide Production. BioTechniques, 1999, 26, 1032-1036.	1.8	6
155	Expression of heterologous genes from an IRES translational cassette in replication competent murine leukemia virus vectors. Gene, 1999, 239, 227-235.	2.2	32
156	Efficient Non-PCR-Mediated Overlap Extension of PCR Fragments by Exonuclease "End Polishing― BioTechniques, 1997, 23, 48-52.	1.8	6
157	MR-proANP measured at admission is associated with incident atrial fibrillation in STEMI patients. Heart and Vessels, 0, , .	1.2	0