
Harald Rennhofer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7536565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solvent-Free Ultrasonic Dispersion of Nanofillers in Epoxy Matrix. Polymers, 2021, 13, 308.	4.5	7
2	Metal–Insulator Transition of Ultrathin Sputtered Metals on Phenolic Resin Thin Films: Growth Morphology and Relations to Surface Free Energy and Reactivity. Nanomaterials, 2021, 11, 589.	4.1	4
3	Performance Analysis of a Facade-Integrated Photovoltaic Powered Cooling System. Sustainability, 2021, 13, 4374.	3.2	3
4	Pore Development during the Carbonization Process of Lignin Microparticles Investigated by Small Angle X-ray Scattering. Molecules, 2021, 26, 2087.	3.8	8
5	Dispersion State and Damage of Carbon Nanotubes and Carbon Nanofibers by Ultrasonic Dispersion: A Review. Nanomaterials, 2021, 11, 1469.	4.1	59
6	Influence of the carbonization temperature on the properties of carbon fibers based on technical softwood kraft lignin blends. Carbon Trends, 2021, 5, 100094.	3.0	7
7	High Speed In Situ Synchrotron Observation of Cyclic Deformation and Phase Transformation of Superelastic Nitinol at Ultrasonic Frequency. Experimental Mechanics, 2020, 60, 317-328.	2.0	9
8	Recalcitrance of hair in historical plasters. Polymer Degradation and Stability, 2020, 181, 109333.	5.8	3
9	Poly(ester amide)s from poly(alkylene succinate)s and rapid crystallizing amido diols: Synthesis, thermal properties and crystallization behavior. European Polymer Journal, 2020, 129, 109622.	5.4	11
10	"Improving the impact strength of PLA and its blends with PHA in fused layer modelling ― Polymer Testing, 2019, 78, 105929.	4.8	31
11	High-resolution large-area imaging of nanoscale structure and mineralization of a sclerosing osteosarcoma in human bone. Journal of Structural Biology, 2019, 207, 56-66.	2.8	4
12	Impact of storage on the physico-chemical properties of microparticles comprising a hydrogenated vegetable oil matrix and different essential oil concentrations. Journal of Microencapsulation, 2019, 36, 72-82.	2.8	2
13	High performance functional composites by in-situ orientation of carbon nanofillers. Composite Structures, 2019, 215, 178-184.	5.8	14
14	Insight into the nanostructure of anisotropic cellulose aerogels upon compression. Soft Matter, 2019, 15, 8372-8380.	2.7	12
15	Enhanced Cu and Cd sorption after soil aging of woodchip-derived biochar: What were the driving factors?. Chemosphere, 2019, 216, 463-471.	8.2	71
16	Electrically Conducting Carbon Microparticles by Direct Carbonization of Spent Wood Pulping Liquor. ACS Sustainable Chemistry and Engineering, 2018, 6, 3385-3391.	6.7	18
17	Conformal Ultrathin Coating by scCO ₂ -Mediated PMMA Deposition: A Facile Approach To Add Moisture Resistance to Lightweight Ordered Nanocellulose Aerogels. Chemistry of Materials, 2018, 30, 2322-2330.	6.7	25
18	Electrically-Conductive Sub-Micron Carbon Particles from Lignin: Elucidation of Nanostructure and Use as Filler in Cellulose Nanopapers. Nanomaterials, 2018, 8, 1055.	4.1	7

HARALD RENNHOFER

#	Article	IF	CITATIONS
19	Acid Free Oxidation and Simple Dispersion Method of MWCNT for High-Performance CFRP. Nanomaterials, 2018, 8, 912.	4.1	29
20	Self-Assembly of Cellulose in Super-Cooled Ionic Liquid under the Impact of Decelerated Antisolvent Infusion: An Approach toward Anisotropic Gels and Aerogels. Biomacromolecules, 2018, 19, 4411-4422.	5.4	20
21	Antibody adsorption in proteinâ€A affinity chromatography – in situ measurement of nanoscale structure by smallâ€angle Xâ€ray scattering. Journal of Separation Science, 2018, 41, 4122-4132.	2.5	11
22	Impact of Pyrolysis Temperature on Charcoal Characteristics. Industrial & Engineering Chemistry Research, 2018, 57, 15613-15619.	3.7	27
23	Formation of essential oil containing microparticles comprising a hydrogenated vegetable oil matrix and characterisation thereof. Journal of Microencapsulation, 2018, 35, 513-521.	2.8	11
24	Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering. Chemistry of Materials, 2017, 29, 4511-4522.	6.7	102
25	Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil. Carbon, 2017, 115, 209-219.	10.3	128
26	Strain Hardening and Pore Size Harmonization by Uniaxial Densification: A Facile Approach toward Superinsulating Aerogels from Nematic Nanofibrillated 2,3-Dicarboxyl Cellulose. Chemistry of Materials, 2017, 29, 6630-6641.	6.7	75
27	Carbon Microparticles from Organosolv Lignin as Filler for Conducting Poly(Lactic Acid). Polymers, 2016, 8, 205.	4.5	14
28	Photon Energy Becomes the Third Dimension in Crystallographic Texture Analysis. Angewandte Chemie - International Edition, 2016, 55, 12190-12194.	13.8	9
29	Photonenenergie als dritte Dimension bei der Analyse der kristallographischen Textur. Angewandte Chemie, 2016, 128, 12376-12381.	2.0	1
30	Frontispiece: Photon Energy Becomes the Third Dimension in Crystallographic Texture Analysis. Angewandte Chemie - International Edition, 2016, 55, .	13.8	0
31	Nanostructured Cellulose II Gel Consisting of Spherical Particles. ACS Sustainable Chemistry and Engineering, 2016, 4, 4424-4432.	6.7	38
32	The influence of thermo-hygro-mechanical treatment on the micro- and nanoscale architecture of wood cell walls using small- and wide-angle X-ray scattering. Cellulose, 2016, 23, 2325-2340.	4.9	31
33	Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone. Biomaterials, 2016, 76, 250-260.	11.4	73
34	Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose, 2016, 23, 1949-1966.	4.9	88
35	SAXS and in-situ SAXS to follow the structural evolution in hybrid materials. Materials Research Society Symposia Proceedings, 2015, 1754, 3-11.	0.1	1
36	Core–Shell Structure of Monodisperse Poly(ethylene glycol)-Grafted Iron Oxide Nanoparticles Studied by Small-Angle X-ray Scattering. Chemistry of Materials, 2015, 27, 4763-4771.	6.7	52

HARALD RENNHOFER

#	Article	IF	CITATIONS
37	Enhanced Cutinase-Catalyzed Hydrolysis of Polyethylene Terephthalate by Covalent Fusion to Hydrophobins. Applied and Environmental Microbiology, 2015, 81, 3586-3592.	3.1	149
38	The structural evolution of multi-layer graphene stacks in carbon fibers under load at high temperature – A synchrotron radiation study. Carbon, 2014, 80, 373-381.	10.3	11
39	Structural development of PAN-based carbon fibers studied by in situ X-ray scattering at high temperatures under load. Carbon, 2010, 48, 964-971.	10.3	61
40	Structural investigation of alumina silica mixed oxide gels prepared from organically modified precursors. Journal of Non-Crystalline Solids, 2007, 353, 1635-1644.	3.1	17
41	Suppression of Crazing in Polystyrene Crosslinked with a Multifunctional Zirconium Oxo Cluster Observed In Situ during Tensile Tests. Macromolecular Rapid Communications, 2007, 28, 2145-2150.	3.9	4
42	Skin-core structure and bimodal Weibull distribution of the strength of carbon fibers. Carbon, 2007, 45, 2801-2805.	10.3	60
43	Structural change of carbon-fibres at high temperatures under load. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 167-172.	3.4	6
44	Processing of Carbon Nanotubes and Carbon Nanofibers towards High Performance Carbon Fiber Reinforced Polymers. Key Engineering Materials, 0, 742, 31-37.	0.4	8
45	Mechanical and Fracture Mechanical Properties of Matrix-Reinforced Carbon Fiber Composites with Carbon Nanotubes. Key Engineering Materials, 0, 809, 615-619.	0.4	1
46	StrukturÄ ¤ derung beim Kriechen von Kohlenstofffasern. , 0, , 373-376.		1

StrukturÄ**¤**derung beim Kriechen von Kohlenstofffasern. , 0, , 373-376. 46