## John M Hutchinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7536462/publications.pdf Version: 2024-02-01



ΙΟΗΝ ΜΗΠΤΟΗΙΝΙΟΝ

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The surface modification of boron nitride particles. Journal of Thermal Analysis and Calorimetry, 2021, 143, 151-163.                                                                        | 3.6 | 10        |
| 2  | Densification: A Route towards Enhanced Thermal Conductivity of Epoxy Composites. Polymers, 2021, 13, 286.                                                                                   | 4.5 | 5         |
| 3  | Remarkable Thermal Conductivity of Epoxy Composites Filled with Boron Nitride and Cured under Pressure. Polymers, 2021, 13, 955.                                                             | 4.5 | 10        |
| 4  | Thermal Conductivity and Cure Kinetics of Epoxy-Boron Nitride Composites—A Review. Materials, 2020,<br>13, 3634.                                                                             | 2.9 | 28        |
| 5  | Epoxy composites filled with boron nitride: cure kinetics and the effect of particle shape on the thermal conductivity. Journal of Thermal Analysis and Calorimetry, 2020, 142, 595-605.     | 3.6 | 9         |
| 6  | Achieving High Thermal Conductivity in Epoxy Composites: Effect of Boron Nitride Particle Size and<br>Matrix-Filler Interface. Polymers, 2019, 11, 1156.                                     | 4.5 | 54        |
| 7  | Study of Hyperbranched Poly(ethyleneimine) Polymers of Different Molecular Weight and Their<br>Interaction with Epoxy Resin. Materials, 2018, 11, 410.                                       | 2.9 | 24        |
| 8  | Epoxy-Thiol Systems Filled with Boron Nitride for High Thermal Conductivity Applications. Polymers, 2018, 10, 340.                                                                           | 4.5 | 17        |
| 9  | Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine) Core and Poly(lactide) Multiarms. Materials, 2017, 10, 127.                                             | 2.9 | 6         |
| 10 | Epoxy composites filled with boron nitride and aluminum nitride for improved thermal conductivity.<br>Polimery, 2017, 62, 560-566.                                                           | 0.7 | 14        |
| 11 | Molecular Mobility in Hyperbranched Polymers and Their Interaction with an Epoxy Matrix. Materials, 2016, 9, 192.                                                                            | 2.9 | 17        |
| 12 | The application of thermal analysis to the study of epoxy–clay nanocomposites. Journal of Thermal<br>Analysis and Calorimetry, 2016, 125, 617-628.                                           | 3.6 | 4         |
| 13 | A novel comparative study of different layered silicate clay types on exfoliation process and final nanostructure of trifunctional epoxy nanocomposites. Polymer Testing, 2016, 56, 148-155. | 4.8 | 3         |
| 14 | Non-isothermal cure and exfoliation of tri-functional epoxy-clay nanocomposites. EXPRESS Polymer<br>Letters, 2015, 9, 695-708.                                                               | 2.1 | 5         |
| 15 | Comparison of the Nanostructure and Mechanical Performance of Highly Exfoliated Epoxy-Clay<br>Nanocomposites Prepared by Three Different Protocols. Materials, 2014, 7, 4196-4223.           | 2.9 | 9         |
| 16 | A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the<br>Curing Reaction and Nanostructure Development. Materials, 2014, 7, 1830-1849.                | 2.9 | 23        |
| 17 | Highly exfoliated nanostructure in trifunctional epoxy/clay nanocomposites using boron trifluoride<br>as initiator. Journal of Applied Polymer Science, 2014, 131, .                         | 2.6 | 9         |
| 18 | Influence of the isothermal cure temperature on the nanostructure and thermal properties of an epoxy layered silicate nanocomposite. Polymer Engineering and Science, 2014, 54, 51-58.       | 3.1 | 18        |

JOHN M HUTCHINSON

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Thermal analysis of polymer layered silicate nanocomposites. Journal of Thermal Analysis and Calorimetry, 2014, 118, 723-729.                                                                                                 | 3.6 | 13        |
| 20 | Comparative results between three protocols for achieving highly exfoliated epoxy-clay nanocomposites. Polimery, 2014, 59, 636-642.                                                                                           | 0.7 | 2         |
| 21 | Isothermal curing of polymer layered silicate nanocomposites based upon epoxy resin by means of anionic homopolymerisation. Thermochimica Acta, 2013, 574, 98-108.                                                            | 2.7 | 9         |
| 22 | Intra―and extraâ€gallery reactions in triâ€functional epoxy polymer layered silicate nanocomposites.<br>Journal of Applied Polymer Science, 2013, 128, 2961-2970.                                                             | 2.6 | 13        |
| 23 | Identification of nanostructural development in epoxy polymer layered silicate nanocomposites from the interpretation of differential scanning calorimetry and dielectric spectroscopy. Thermochimica Acta, 2012, 541, 76-85. | 2.7 | 13        |
| 24 | Determination of the Glass Transition by DSC: A Comparison of Conventional and Dynamic Techniques.<br>Hot Topics in Thermal Analysis and Calorimetry, 2012, , 135-146.                                                        | 0.5 | 0         |
| 25 | Elastomeric epoxy nanocomposites: Nanostructure and properties. Composites Science and Technology, 2012, 72, 640-646.                                                                                                         | 7.8 | 12        |
| 26 | lsothermal and non-isothermal cure of a tri-functional epoxy resin (TGAP): A stochastic TMDSC study.<br>Thermochimica Acta, 2012, 529, 14-21.                                                                                 | 2.7 | 22        |
| 27 | Vitrification and devitrification during the non-isothermal cure of a thermoset. Journal of Thermal<br>Analysis and Calorimetry, 2010, 99, 925-929.                                                                           | 3.6 | 11        |
| 28 | Vitrification and Devitrification during the Nonâ€Isothermal Cure of a Thermoset. Theoretical Model<br>and Comparison with Calorimetric Experiments. Macromolecular Chemistry and Physics, 2010, 211,<br>57-65.               | 2.2 | 13        |
| 29 | Homopolymerization effects in polymer layered silicate nanocomposites based upon epoxy resin:<br>Implications for exfoliation. Journal of Applied Polymer Science, 2009, 114, 1040-1047.                                      | 2.6 | 24        |
| 30 | Determination of the glass transition temperature. Journal of Thermal Analysis and Calorimetry, 2009,<br>98, 579-589.                                                                                                         | 3.6 | 81        |
| 31 | Vitrification during the isothermal cure of thermosets. Journal of Thermal Analysis and Calorimetry, 2008, 91, 687-695.                                                                                                       | 3.6 | 26        |
| 32 | Vitrification during the Isothermal Cure of Thermosets: Comparison of Theoretical Simulations with<br>Temperatureâ€Modulated DSC and Dielectric Analysis. Macromolecular Chemistry and Physics, 2008,<br>209, 2003-2011.      | 2.2 | 18        |
| 33 | Analysis of the cure of epoxy based layered silicate nanocomposites: Reaction kinetics and nanostructure development. Journal of Applied Polymer Science, 2008, 108, 923-938.                                                 | 2.6 | 50        |
| 34 | Unified Approach to Ion Transport and Structural Relaxation in Amorphous Polymers and Glasses.<br>Journal of Physical Chemistry B, 2008, 112, 859-866.                                                                        | 2.6 | 21        |
| 35 | High Pressure Differential Scanning Calorimetry Investigations on the Pressure Dependence of the<br>Melting of Paracetamol Polymorphs I and II. Journal of Pharmaceutical Sciences, 2007, 96, 2784-2794.                      | 3.3 | 45        |
| 36 | On the effect of montmorillonite in the curing reaction of epoxy nanocomposites. Journal of Thermal<br>Analysis and Calorimetry, 2007, 87, 113-118.                                                                           | 3.6 | 51        |

JOHN M HUTCHINSON

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | TOPEM, a new temperature modulated DSC technique. Journal of Thermal Analysis and Calorimetry, 2007, 87, 119-124.                                                         | 3.6 | 45        |
| 38 | High pressure differential scanning calorimetry: Aspects of calibration. Thermochimica Acta, 2006, 446, 66-72.                                                            | 2.7 | 20        |
| 39 | Physical aging of thermosetting powder coatings. Progress in Organic Coatings, 2006, 55, 35-42.                                                                           | 3.9 | 26        |
| 40 | Intercalation of epoxy resin in organically modified montmorillonite. Journal of Applied Polymer Science, 2006, 102, 3751-3763.                                           | 2.6 | 42        |
| 41 | Effect of cooling rate and frequency on the calorimetric measurement of the glass transition.<br>Polymer, 2005, 46, 12181-12189.                                          | 3.8 | 35        |
| 42 | Studying the Glass Transition by DSC and TMDSC. Journal of Thermal Analysis and Calorimetry, 2003, 72, 619-629.                                                           | 3.6 | 45        |
| 43 | On the application of the Adam–Gibbs equation to the non-equilibrium glassy state. Journal of<br>Non-Crystalline Solids, 2002, 307-310, 412-416.                          | 3.1 | 5         |
| 44 | An introduction to temperature modulated differential scanning calorimetry (TMDSC): a relatively non-mathematical approach. Thermochimica Acta, 2002, 387, 75-93.         | 2.7 | 41        |
| 45 | Enthalpy relaxation in polyvinyl acetate. Thermochimica Acta, 2002, 391, 197-217.                                                                                         | 2.7 | 62        |
| 46 | The application of temperature-modulated DSC to the glass transition region. Thermochimica Acta, 2001, 377, 63-84.                                                        | 2.7 | 44        |
| 47 | Enthalpy relaxation of non-stoichiometric epoxy-amine resins. Polymer, 2001, 42, 7081-7093.                                                                               | 3.8 | 58        |
| 48 | Measurement of the wax appearance temperatures of crude oils by temperature modulated differential scanning calorimetry. Fuel, 2001, 80, 367-371.                         | 6.4 | 53        |
| 49 | Title is missing!. Magyar Apróvad Közlemények, 2001, 64, 85-107.                                                                                                          | 1.4 | 8         |
| 50 | Effect of crosslink length on the enthalpy relaxation of fully cured epoxy-diamine resins. , 2000, 38, 456-468.                                                           |     | 30        |
| 51 | Application of the Adamâ^'Gibbs Equation to the Non-Equilibrium Glassy State. Macromolecules, 2000, 33, 5252-5262.                                                        | 4.8 | 52        |
| 52 | Aging of polycarbonate studied by temperature modulated differential scanning calorimetry.<br>Thermochimica Acta, 1999, 335, 27-42.                                       | 2.7 | 36        |
| 53 | Temperature modulated differential scanning calorimetry. Part III. Effect of heat transfer on phase angle in quasi-isothermal ADSC. Thermochimica Acta, 1999, 336, 27-40. | 2.7 | 11        |
| 54 | Physical Aging of Polycarbonate: Enthalpy Relaxation, Creep Response, and Yielding Behavior.<br>Macromolecules, 1999, 32, 5046-5061.                                      | 4.8 | 156       |

JOHN M HUTCHINSON

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Enthalpy relaxation in polymethyl(?-n-alkyl)acrylates: Effect of length of alkyl chain. Journal of<br>Polymer Science, Part B: Polymer Physics, 1998, 36, 583-593.                                                              | 2.1  | 18        |
| 56 | Interpretation of glass transition phenomena in the light of the strength-fragility concept. Polymer<br>International, 1998, 47, 56-64.                                                                                         | 3.1  | 30        |
| 57 | Temperature-modulated differential scanning calorimetry. Part II. Determination of activation energies. Polymer International, 1998, 47, 72-75.                                                                                 | 3.1  | 18        |
| 58 | Temperature modulated differential scanning calorimetry. Part I:. Thermochimica Acta, 1998, 315, 1-9.                                                                                                                           | 2.7  | 43        |
| 59 | Characterising the glass transition and relaxation kinetics by conventional and temperature-modulated differential scanning calorimetry. Thermochimica Acta, 1998, 324, 165-174.                                                | 2.7  | 55        |
| 60 | The application of modulated differential scanning calorimetry to the glass transition of polymers. I.<br>A single-parameter theoretical model and its predictions. Thermochimica Acta, 1996, 286, 263-296.                     | 2.7  | 50        |
| 61 | Physical aging in polymers: Comparison of two ways of determining narayanaswamy's parameter.<br>Polymer Engineering and Science, 1996, 36, 2978-2985.                                                                           | 3.1  | 21        |
| 62 | Physical aging of polymers. Progress in Polymer Science, 1995, 20, 703-760.                                                                                                                                                     | 24.7 | 852       |
| 63 | Lithium borate glasses: a quantitative study of strength and fragility. Journal of Non-Crystalline<br>Solids, 1994, 172-174, 378-383.                                                                                           | 3.1  | 58        |
| 64 | The appearance of annealing pre-peaks in inorganic glasses: new experimental results and theoretical interpretation. Journal of Non-Crystalline Solids, 1994, 172-174, 584-591.                                                 | 3.1  | 10        |
| 65 | Physical aging and enthalpy relaxation in polypropylene. Journal of Non-Crystalline Solids, 1994, 172-174, 592-596.                                                                                                             | 3.1  | 10        |
| 66 | Structural relaxation in fully cured epoxy resins. Journal of Non-Crystalline Solids, 1994, 172-174, 1017-1022.                                                                                                                 | 3.1  | 32        |
| 67 | On the use of a density gradient column to monitor the physical ageing of polystyrene. Polymer, 1992, 33, 4875-4877.                                                                                                            | 3.8  | 7         |
| 68 | Structural recovery in silver iodide containing glasses: illustration of the use of the peak-shift<br>method for the evaluation of the Narayanaswamy parameter x. Journal of Non-Crystalline Solids, 1991,<br>131-133, 483-487. | 3.1  | 19        |
| 69 | Thermal cycling of glasses. III. Upper peaks. Journal of Polymer Science, Part B: Polymer Physics, 1990, 28, 2127-2163.                                                                                                         | 2.1  | 71        |
| 70 | Structural recovery in glass. Journal of Non-Crystalline Solids, 1989, 108, 225-232.                                                                                                                                            | 3.1  | 5         |
| 71 | Thermal cycling of glasses. II. Experimental evaluation of the structure (or nonlinearity) parameter x.<br>Journal of Polymer Science, Part B: Polymer Physics, 1988, 26, 2341-2366.                                            | 2.1  | 114       |
| 72 | Differential scanning calorimetry of polymer glasses: corrections for thermal lag. Polymer, 1988, 29,<br>152-159.                                                                                                               | 3.8  | 53        |