Lorenz Studer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7535851/publications.pdf

Version: 2024-02-01

187 28,976 78 164
papers citations h-index g-index

215 215 215 30617 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Human stem cell models of neurodegeneration: From basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell, 2022, 29, 11-35.	5.2	39
2	Anatomic position determines oncogenic specificity in melanoma. Nature, 2022, 604, 354-361.	13.7	44
3	A dual SHOX2:GFP; MYH6:mCherry knockin hESC reporter line for derivation of human SAN-like cells. IScience, 2022, 25, 104153.	1.9	1
4	Induced pluripotent stem cells: a tool for modeling Parkinson's disease. Trends in Neurosciences, 2022, 45, 608-620.	4.2	17
5	Recurrent chromosomal imbalances provide selective advantage to human embryonic stem cells under enhanced replicative stress conditions. Genes Chromosomes and Cancer, 2021, 60, 272-281.	1.5	3
6	Human stem cell models to study host–virus interactions in the central nervous system. Nature Reviews Immunology, 2021, 21, 441-453.	10.6	35
7	TLR3 controls constitutive IFN- \hat{l}^2 antiviral immunity in human fibroblasts and cortical neurons. Journal of Clinical Investigation, 2021, 131, .	3.9	64
8	Preclinical Efficacy and Safety of a Human Embryonic Stem Cell-Derived Midbrain Dopamine Progenitor Product, MSK-DA01. Cell Stem Cell, 2021, 28, 217-229.e7.	5.2	116
9	Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer's disease. Nature Neuroscience, 2021, 24, 343-354.	7.1	118
10	Biphasic Activation of WNT Signaling Facilitates the Derivation of Midbrain Dopamine Neurons from hESCs for Translational Use. Cell Stem Cell, 2021, 28, 343-355.e5.	5.2	100
11	Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	119
12	Kathryn Anderson (1952–2020). Cell, 2021, 184, 1123-1126.	13.5	0
13	Disabling the Fanconi Anemia Pathway in Stem Cells Leads to Radioresistance and Genomic Instability. Cancer Research, 2021, 81, 3706-3716.	0.4	O
14	Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nature Communications, 2021, 12, 4507.	5.8	21
15	Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nature Communications, 2021, 12, 5056.	5.8	15
16	Developmental chromatin programs determine oncogenic competence in melanoma. Science, 2021, 373, eabc1048.	6.0	80
17	Activation of HERV-K(HML-2) disrupts cortical patterning and neuronal differentiation by increasing NTRK3. Cell Stem Cell, 2021, 28, 1566-1581.e8.	5.2	27
18	Neuron-intrinsic immunity to viruses in mice and humans. Current Opinion in Immunology, 2021, 72, 309-317.	2.4	14

#	Article	IF	CITATIONS
19	Accelerated transsulfuration metabolically defines a discrete subclass of amyotrophic lateral sclerosis patients. Neurobiology of Disease, 2020, 144, 105025.	2.1	12
20	Pluripotent Stem Cell Therapies for Parkinson Disease: Present Challenges and Future Opportunities. Frontiers in Cell and Developmental Biology, 2020, 8, 729.	1.8	65
21	A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell, 2020, 27, 125-136.e7.	5.2	543
22	A Multiplex Human Pluripotent Stem Cell Platform Defines Molecular and Functional Subclasses of Autism-Related Genes. Cell Stem Cell, 2020, 27, 35-49.e6.	5.2	56
23	The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nature Communications, 2020, 11, 319.	5.8	46
24	Parkinson's disease grafts benefit from well-timed growth factor. Nature, 2020, 582, 39-40.	13.7	5
25	Loss of SATB1 Induces p21-Dependent Cellular Senescence in Post-mitotic Dopaminergic Neurons. Cell Stem Cell, 2019, 25, 514-530.e8.	5.2	96
26	Lipid Deprivation Induces a Stable, Naive-to-Primed Intermediate State of Pluripotency in Human PSCs. Cell Stem Cell, 2019, 25, 120-136.e10.	5.2	98
27	Derivation of enteric neuron lineages from human pluripotent stem cells. Nature Protocols, 2019, 14, 1261-1279.	5.5	46
28	Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nature Biomedical Engineering, 2019, 3, 571-582.	11.6	18
29	Specification of positional identity in forebrain organoids. Nature Biotechnology, 2019, 37, 436-444.	9.4	226
30	NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells. Nature Biotechnology, 2019, 37, 267-275.	9.4	150
31	Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nature Medicine, 2019, 25, 1873-1884.	15.2	76
32	Inborn Errors of RNA Lariat Metabolism in Humans with Brainstem Viral Infection. Cell, 2018, 172, 952-965.e18.	13.5	92
33	A hPSC-based platform to discover gene-environment interactions that impact human \hat{l}^2 -cell and dopamine neuron survival. Nature Communications, 2018, 9, 4815.	5.8	29
34	HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons. Nature Communications, 2018, 9, 4345.	5.8	40
35	Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nature Materials, 2018, 17, 633-641.	13.3	174
36	Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ). DMM Disease Models and Mechanisms, $2018,11,$	1.2	40

#	Article	IF	CITATIONS
37	Human iPSC-derived trigeminal neurons lack constitutive TLR3-dependent immunity that protects cortical neurons from HSV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8775-E8782.	3.3	58
38	TCF3 alternative splicing controlled by hnRNP H/F regulates E-cadherin expression and hESC pluripotency. Genes and Development, 2018, 32, 1161-1174.	2.7	60
39	Back and forth in time: Directing age in iPSC-derived lineages. Brain Research, 2017, 1656, 14-26.	1.1	38
40	Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nature Biotechnology, 2017, 35, 154-163.	9.4	186
41	Lessons Learned from Pioneering Neural Stem Cell Studies. Stem Cell Reports, 2017, 8, 191-193.	2.3	24
42	Pluripotent stem cells in neuropsychiatric disorders. Molecular Psychiatry, 2017, 22, 1241-1249.	4.1	113
43	Human Trials of Stem Cell-Derived Dopamine Neurons for Parkinson's Disease: Dawn of a New Era. Cell Stem Cell, 2017, 21, 569-573.	5.2	275
44	A Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages. Cell Stem Cell, 2017, 21, 399-410.e7.	5.2	168
45	High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain. Cell Stem Cell, 2017, 21, 274-283.e5.	5.2	214
46	GFORCE-PD still going strong in 2016. Npj Parkinson's Disease, 2017, 3, .	2.5	2
47	DNA replication timing alterations identify common markers between distinct progeroid diseases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10972-E10980.	3.3	36
48	Strategies for bringing stem cell-derived dopamine neurons to the clinicâ€"The NYSTEM trial. Progress in Brain Research, 2017, 230, 191-212.	0.9	67
49	New ISSCR guidelines: clinical translation of stem cell research. Lancet, The, 2016, 387, 1979-1981.	6.3	42
50	Setting Global Standards for Stem Cell Research and Clinical Translation: TheÂ2016 ISSCR Guidelines. Stem Cell Reports, 2016, 6, 787-797.	2.3	172
51	The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature, 2016, 538, 397-401.	13.7	233
52	Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and \hat{l}_{\pm} -Synuclein Accumulation. Stem Cell Reports, 2016, 7, 664-677.	2.3	164
53	Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nature Medicine, 2016, 22, 1421-1427.	15. 2	58
54	Generating Late-Onset Human iPSC-Based Disease Models by Inducing Neuronal Age-Related Phenotypes through Telomerase Manipulation. Cell Reports, 2016, 17, 1184-1192.	2.9	126

#	Article	IF	Citations
55	Feeder-free Derivation of Melanocytes from Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2016, , e53806.	0.2	6
56	Derivation of Diverse Hormone-Releasing Pituitary Cells from Human Pluripotent Stem Cells. Stem Cell Reports, 2016, 6, 858-872.	2.3	50
57	Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature, 2016, 531, 105-109.	13.7	252
58	α-Synuclein–induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1931-1936.	3.3	292
59	Functional Connectivity under Optogenetic Control Allows Modeling of Human Neuromuscular Disease. Cell Stem Cell, 2016, 18, 134-143.	5.2	92
60	Human Pluripotent-Derived Lineages for Repairing Hypopituitarism. Research and Perspectives in Endocrine Interactions, 2016, , 25-34.	0.2	1
61	Policy: Global standards for stem-cell research. Nature, 2016, 533, 311-313.	13.7	41
62	Abstract A08: Using directed differentiation of human pluripotent stem cells and gene expression profiling to characterize the cell of origin of neuroblastoma. Cancer Research, 2016, 76, A08-A08.	0.4	0
63	Neural Crest Cells from Dual SMAD Inhibition. Current Protocols in Stem Cell Biology, 2015, 33, 1H.9.1-1H.9.9.	3.0	6
64	G-Force PD: a global initiative in coordinating stem cell-based dopamine treatments for Parkinson's disease. Npj Parkinson's Disease, 2015, 1, 15017.	2.5	48
65	Deciphering Human Cell-Autonomous Anti-HSV-1 Immunity in the Central Nervous System. Frontiers in Immunology, 2015, 6, 208.	2.2	19
66	Targeting Homologous Recombination in Notch-Driven C. elegans Stem Cell and Human Tumors. PLoS ONE, 2015, 10, e0127862.	1.1	11
67	Programming and Reprogramming Cellular Age in the Era of Induced Pluripotency. Cell Stem Cell, 2015, 16, 591-600.	5.2	147
68	Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.	2.3	72
69	When rejuvenation is a problem: challenges of modeling late-onset neurodegenerative disease. Development (Cambridge), 2015, 142, 3085-3089.	1.2	38
70	Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development (Cambridge), 2015, 142, 633-643.	1.2	131
71	Optogenetics enables functional analysis of human embryonic stem cell–derived grafts in a Parkinson's disease model. Nature Biotechnology, 2015, 33, 204-209.	9.4	256
72	Moving Stem Cells to the Clinic: Potential and Limitations for Brain Repair. Neuron, 2015, 86, 187-206.	3.8	121

#	Article	IF	Citations
73	Retinoic Acid-Mediated Regulation of GLI3 Enables Efficient Motoneuron Derivation from Human ESCs in the Absence of Extrinsic SHH Activation. Journal of Neuroscience, 2015, 35, 11462-11481.	1.7	27
74	Pluripotent stem cell-based disease modeling: current hurdles and future promise. Current Opinion in Cell Biology, 2015, 37, 102-110.	2.6	66
75	The Polycomb Group Protein L3MBTL1 Represses a SMAD5-Mediated Hematopoietic Transcriptional Program in Human Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 658-669.	2.3	7
76	Enhancement of Polysialic Acid Expression Improves Function of Embryonic Stem-Derived Dopamine Neuron Grafts in Parkinsonian Mice. Stem Cells Translational Medicine, 2014, 3, 108-113.	1.6	19
77	A Cell Engineering Strategy to Enhance the Safety of Stem Cell Therapies. Cell Reports, 2014, 8, 1677-1685.	2.9	9
78	Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews Genetics, 2014, 15, 82-92.	7.7	403
79	MHC-l expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nature Communications, 2014, 5, 3633.	5.8	254
80	Feeder-free Derivation of Neural Crest Progenitor Cells from Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2014, , .	0.2	16
81	Aging in iPS cells. Aging, 2014, 6, 246-247.	1.4	15
82	Modeling Neural Crest Induction, Melanocyte Specification, and Disease-Related Pigmentation Defects in hESCs and Patient-Specific iPSCs. Cell Reports, 2013, 3, 1140-1152.	2.9	240
83	Build-a-Brain. Cell Stem Cell, 2013, 13, 377-378.	5.2	20
84	Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging. Cell Stem Cell, 2013, 13, 691-705.	5.2	613
85	Specification of Functional Cranial Placode Derivatives from Human Pluripotent Stem Cells. Cell Reports, 2013, 5, 1387-1402.	2.9	99
86	Adapting human pluripotent stem cells to high-throughput and high-content screening. Nature Protocols, 2013, 8, 111-130.	5.5	62
87	Dual-SMAD Inhibition/WNT Activation-Based Methods to Induce Neural Crest and Derivatives from Human Pluripotent Stem Cells. Methods in Molecular Biology, 2013, 1307, 329-343.	0.4	70
88	Human iPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinate and Rescue a Mouse Model of Congenital Hypomyelination. Cell Stem Cell, 2013, 12, 252-264.	5.2	500
89	Directed Differentiation and Functional Maturation of Cortical Interneurons from Human Embryonic Stem Cells. Cell Stem Cell, 2013, 12, 559-572.	5. 2	505
90	Evaluation of Developmental Toxicants and Signaling Pathways in a Functional Test Based on the Migration of Human Neural Crest Cells. Environmental Health Perspectives, 2012, 120, 1116-1122.	2.8	93

#	Article	IF	CITATIONS
91	Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nature Biotechnology, 2012, 30, 1244-1248.	9.4	211
92	Derivation of dopaminergic neurons from pluripotent stem cells. Progress in Brain Research, 2012, 200, 243-263.	0.9	56
93	Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature, 2012, 491, 769-773.	13.7	288
94	Maturation of Spinal Motor Neurons Derived from Human Embryonic Stem Cells. PLoS ONE, 2012, 7, e40154.	1.1	64
95	The expanding role of miR-302–367 in pluripotency and reprogramming. Cell Cycle, 2012, 11, 1517-1523.	1.3	61
96	Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nature Biotechnology, 2012, 30, 715-720.	9.4	515
97	Identification of embryonic stem cell–derived midbrain dopaminergic neurons for engraftment. Journal of Clinical Investigation, 2012, 122, 2928-2939.	3.9	131
98	ZFX Controls the Self-Renewal of Human Embryonic Stem Cells. PLoS ONE, 2012, 7, e42302.	1.1	46
99	Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes and Development, 2011, 25, 2173-2186.	2.7	175
100	Converting Human Pluripotent Stem Cells to Neural Tissue and Neurons to Model Neurodegeneration. Methods in Molecular Biology, 2011, 793, 87-97.	0.4	34
101	Cell Fate Plug and Play: Direct Reprogramming and Induced Pluripotency. Cell, 2011, 145, 827-830.	13.5	113
102	A Poised Chromatin Platform for TGF-Î ² Access to Master Regulators. Cell, 2011, 147, 1511-1524.	13.5	251
103	miR-371-3 Expression Predicts Neural Differentiation Propensity in Human Pluripotent Stem Cells. Cell Stem Cell, 2011, 8, 695-706.	5.2	126
104	Genomic safe harbors permit high \hat{l}^2 -globin transgene expression in thalassemia induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 73-78.	9.4	277
105	IPSCs put to the test. Nature Biotechnology, 2011, 29, 233-235.	9.4	1
106	Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature, 2011, 480, 547-551.	13.7	1,603
107	Modelling familial dysautonomia in human induced pluripotent stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2286-2296.	1.8	34
108	Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF- $\hat{\mathbb{P}}$ B signalling. Nature Communications, 2011, 2, 162.	5.8	239

#	Article	IF	Citations
109	Cellular Reprogramming: Recent Advances in Modeling Neurological Diseases. Journal of Neuroscience, 2011, 31, 16070-16075.	1.7	25
110	Embryonic stem cell therapy for intractable epilepsy. Epilepsia, 2010, 51, 93-93.	2.6	3
111	Excessive mobility interrupted. Nature, 2010, 468, 383-384.	13.7	4
112	Induced pluripotent stem cell technology for the study of human disease. Nature Methods, 2010, 7, 25-27.	9.0	48
113	Derivation of neural crest cells from human pluripotent stem cells. Nature Protocols, 2010, 5, 688-701.	5.5	307
114	Single-Molecule Analysis Reveals Changes in the DNA Replication Program for the <i>POU5F1</i> Locus upon Human Embryonic Stem Cell Differentiation. Molecular and Cellular Biology, 2010, 30, 4521-4534.	1.1	24
115	Prospective Isolation of Cortical Interneuron Precursors from Mouse Embryonic Stem Cells. Journal of Neuroscience, 2010, 30, 4667-4675.	1.7	81
116	Wnt1 Overexpression Leads to Enforced Cardiomyogenesis and Inhibition of Hematopoiesis in Murine Embryonic Stem Cells. Stem Cells and Development, 2010, 19, 745-751.	1.1	8
117	Expansion and maintenance of human embryonic stem cell–derived endothelial cells by TGFβ inhibition is ld1 dependent. Nature Biotechnology, 2010, 28, 161-166.	9.4	282
118	Therapeutic Transgene Expression From Genomic Safe Harbors In Patient-Specific Induced Pluripotent Stem Cells. Blood, 2010, 116, 564-564.	0.6	4
119	Protocols for Generating ES Cell-Derived Dopamine Neurons. Advances in Experimental Medicine and Biology, 2009, 651, 101-111.	0.8	21
120	Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12759-12764.	3.3	262
121	Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes and Development, 2009, 23, 561-574.	2.7	146
122	Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. Journal of Neurochemistry, 2009, 76, 307-311.	2.1	154
123	Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 2009, 461, 402-406.	13.7	808
124	Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 2009, 27, 275-280.	9.4	3,047
125	Too much Sonic, too few neurons. Nature Neuroscience, 2009, 12, 107-108.	7.1	7
126	BAC Transgenesis in Human Embryonic Stem Cells as a Novel Tool to Define the Human Neural Lineage. Stem Cells, 2009, 27, 521-532.	1.4	75

#	Article	IF	CITATIONS
127	Genetic Manipulation of Human Embryonic Stem Cells. , 2009, , 75-86.		O
128	Enriched motor neuron populations derived from bacterial artificial chromosome-transgenic human embryonic stem cells. Clinical Neurosurgery, 2009, 56, 125-32.	0.2	3
129	Therapeutic cloning in individual parkinsonian mice. Nature Medicine, 2008, 14, 379-381.	15.2	116
130	High-Throughput Screening Assay for the Identification of Compounds Regulating Self-Renewal and Differentiation in Human Embryonic Stem Cells. Cell Stem Cell, 2008, 2, 602-612.	5.2	211
131	Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson's disease. Brain, 2008, 131, 2127-2139.	3.7	78
132	Human ESC-derived Neural Rosettes and Neural Stem Cell Progression. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 377-387.	2.0	94
133	Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes and Development, 2008, 22, 152-165.	2.7	604
134	Embryonic stem cell-based models of parkinson's disease., 2008,, 461-474.		0
135	Enriched Motor Neuron Populations Derived from Bacterial Artificial Chromosome-transgenic Human Embryonic Stem Cells. Neurosurgery, 2008, 62, 1400.	0.6	0
136	Production of Green Fluorescent Protein Transgenic Embryonic Stem Cells Using the GENSAT Bacterial Artificial Chromosome Library. Stem Cells, 2007, 25, 39-45.	1.4	34
137	Constitutive Gene Expression Predisposes Morphogen-Mediated Cell Fate Responses of NT2/D1 and 27X-1 Human Embryonal Carcinoma Cells. Stem Cells, 2007, 25, 771-778.	1.4	12
138	Neural Stem Cells. , 2007, , 947-965.		0
139	Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nature Biotechnology, 2007, 25, 1468-1475.	9.4	490
140	Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nature Medicine, 2007, 13, 642-648.	15.2	297
141	Optical bioluminescence imaging of human ES cell progeny in the rodent CNS. Journal of Neurochemistry, 2007, 102, 2029-2039.	2.1	26
142	Embryonic Stem Cell-Derived Neurons Form Functional Networks In Vitro. Stem Cells, 2007, 25, 738-749.	1.4	51
143	Directed Differentiation and Transplantation of Human Embryonic Stem Cell-Derived Motoneurons. Stem Cells, 2007, 25, 1931-1939.	1.4	316
144	Embryonic Stem Cells for Grafting in Parkinson's Disease. , 2006, , 269-284.		0

#	Article	IF	CITATIONS
145	Therapeutic Cloning in Mice. Neurosurgery, 2006, 59, 480.	0.6	O
146	Transplanted dopamine neurons derived from primate ES cells preferentially innervate DARPP-32 striatal progenitors within the graft. European Journal of Neuroscience, 2006, 24, 1885-1896.	1.2	46
147	Mesenchymal Cells. Methods in Enzymology, 2006, 418, 194-208.	0.4	5
148	Acquisition of in vitro and in vivo functionality of Nurr1â€induced dopamine neurons. FASEB Journal, 2006, 20, 2553-2555.	0.2	54
149	Human Embryonic Stem Cells: In Vivo Behavior after Grafting in the Rodent Brain. Neurosurgery, 2005, 57, 400-400.	0.6	0
150	Long-Term Survival of Dopamine Neurons Derived from Parthenogenetic Primate Embryonic Stem Cells (Cyno-1) After Transplantation. Stem Cells, 2005, 23, 914-922.	1.4	122
151	Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nature Biotechnology, 2005, 23, 601-606.	9.4	178
152	Transcriptional program of bone morphogenetic protein-2-induced epithelial and smooth muscle differentiation of pluripotent human embryonal carcinoma cells. Functional and Integrative Genomics, 2005, 5, 59-69.	1.4	20
153	Derivation of Multipotent Mesenchymal Precursors from Human Embryonic Stem Cells. PLoS Medicine, 2005, 2, e161.	3.9	396
154	Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12543-12548.	3.3	922
155	Enhanced In Vitro Midbrain Dopamine Neuron Differentiation, Dopaminergic Function, Neurite Outgrowth, and 1-Methyl-4-Phenylpyridium Resistance in Mouse Embryonic Stem Cells Overexpressing Bcl-XL. Journal of Neuroscience, 2004, 24, 843-852.	1.7	88
156	ES Cells and Nuclear Transfer Cloning. , 2004, , 623-633.		1
157	Neural transplantation for the treatment of Parkinson's disease. Lancet Neurology, The, 2003, 2, 437-445.	4.9	322
158	Dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression. Journal of Neurochemistry, 2003, 85, 1443-1454.	2.1	142
159	Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nature Biotechnology, 2003, 21, 1200-1207.	9.4	585
160	Making and repairing the mammalian brainâ€"in vitro production of dopaminergic neurons. Seminars in Cell and Developmental Biology, 2003, 14, 181-189.	2.3	32
161	Nonhuman primate parthenogenetic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11911-11916.	3.3	176
162	Neural Cells Derived From Embryonic Stem Cells. , 2003, , 155-180.		0

#	Article	IF	Citations
163	Parthenogenetic Stem Cells in Nonhuman Primates. Science, 2002, 295, 819-819.	6.0	284
164	Novel sources of stem cells for brain repair. Clinical Neuroscience Research, 2002, 2, 2-10.	0.8	2
165	Expression profiling of lineage differentiation in pluripotential human embryonal carcinoma cells. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 2002, 13, 257-64.	0.8	24
166	Differentiation of Embryonic Stem Cell Lines Generated from Adult Somatic Cells by Nuclear Transfer. Science, 2001, 292, 740-743.	6.0	548
167	In vitro generation and transplantation of precursor-derived human dopamine neurons. Journal of Neuroscience Research, 2001, 65, 284-288.	1.3	121
168	Stem cells with brainpower. Nature Biotechnology, 2001, 19, 1117-1118.	9.4	29
169	Sequential actions of BMP receptors control neural precursor cell production and fate. Genes and Development, 2001, 15, 2094-2110.	2.7	298
170	718 Dopaminergic Neurons from Adult Somatic Cells via Nuclear Transfer. Neurosurgery, 2001, 49, 511.	0.6	0
171	Early cortical precursors do not undergo LIF-mediated astrocytic differentiation. , 2000, 59, 301-311.		85
172	Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnology, 2000, 18, 675-679.	9.4	1,210
173	Enhanced Proliferation, Survival, and Dopaminergic Differentiation of CNS Precursors in Lowered Oxygen. Journal of Neuroscience, 2000, 20, 7377-7383.	1.7	665
174	Early cortical precursors do not undergo LIF-mediated astrocytic differentiationThis article is a US Government work and, as such, is in the public domain in the United States of America Journal of Neuroscience Research, 2000, 59, 301.	1.3	5
175	Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nature Neuroscience, 1998, 1, 290-295.	7.1	495
176	Reply to "Survival of expanded dopaminergic precursors is critical for clinical trials― Nature Neuroscience, 1998, 1, 537-537.	7.1	203
177	Experimental Transplantation in the Embryonic, Neonatal, and Adult Mammalian Brain. Current Protocols in Neuroscience, 1997, 1, 3.10.1-3.10.28.	2.6	4
178	Culture of Substantia Nigra Neurons. Current Protocols in Neuroscience, 1997, 00, 3.3.1-3.3.12.	2.6	11
179	A mathematical model for the estimation of human embryonic and fetal age. Cell Transplantation, 1996, 5, 453-464.	1.2	58
180	Noninvasive dopamine determination by reversed phase HPLC in the medium of free-floating roller tube cultures of rat fetal ventral mesencephalon: A tool to assess dopaminergic tissue prior to grafting. Brain Research Bulletin, 1996, 41, 143-150.	1.4	44

#	Article	IF	CITATIONS
181	Fetal ventral mesencephalon of human and rat origin maintained in vitro and transplanted to 6-hydroxydopamine-lesioned rats gives rise to grafts rich in dopaminergic neurons. Experimental Brain Research, 1996, 112, 47-57.	0.7	27
182	Effects of brain-derived neurotrophic factor on neuronal structure of dopaminergic neurons in dissociated cultures of human fetal mesencephalon. Experimental Brain Research, 1996, 108, 328-36.	0.7	38
183	Comparison of the topology and growth rules of motoneuronal dendrites. Journal of Comparative Neurology, 1995, 363, 505-516.	0.9	29
184	Comparison of the Effects of the Neurotrophins on the Morphological Structure of Dopaminergic Neurons in Cultures of Rat Substantia Nigra. European Journal of Neuroscience, 1995, 7, 223-233.	1.2	101
185	Effect of BDNF on Dopaminergic, Serotonergic, and GABAergic Neurons in Cultures of Human Fetal Ventral Mesencephalon. Experimental Neurology, 1995, 133, 50-63.	2.0	103
186	NGF increases neuritic complexity of cholinergic interneurons in organotypic cultures of neonatal rat striatum. Journal of Comparative Neurology, 1994, 340, 281-296.	0.9	35
187	Long-term survival of dopaminergic neurones in free-floating roller tube cultures of human fetal ventral mesencephalon. Journal of Neuroscience Methods, 1994, 54, 63-73.	1.3	41