Koen J T Venken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7535699/publications.pdf

Version: 2024-02-01

47 papers

7,942 citations

32 h-index 214800 47 g-index

49 all docs 49 docs citations

49 times ranked

10504 citing authors

#	Article	IF	CITATIONS
1	Oleic acid is an endogenous ligand of TLX/NR2E1 that triggers hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2023784119.	7.1	30
2	Human pancreatic microenvironment promotes \hat{I}^2 -cell differentiation via non-canonical WNT5A/JNK and BMP signaling. Nature Communications, 2022, 13, 1952.	12.8	11
3	A novel statistical method for interpreting the pathogenicity of rare variants. Genetics in Medicine, 2021, 23, 59-68.	2.4	3
4	Determining effective drug concentrations for selection and counterselection genetics in Drosophila melanogaster. STAR Protocols, 2021, 2, 100783.	1.2	4
5	Multiplexed drug-based selection and counterselection genetic manipulations in Drosophila. Cell Reports, 2021, 36, 109700.	6.4	10
6	A GoldenBraid cloning system for synthetic biology in social amoebae. Nucleic Acids Research, 2020, 48, 4139-4146.	14.5	13
7	Rapid and Efficient Synthetic Assembly of Multiplex Luciferase Reporter Plasmids for the Simultaneous Monitoring of Up to Six Cellular Signaling Pathways. Current Protocols in Molecular Biology, 2020, 131, e121.	2.9	11
8	Simultaneous Examination of Cellular Pathways using Multiplex Hextuple Luciferase Assaying. Current Protocols in Molecular Biology, 2020, 131, e122.	2.9	5
9	A Pipeline for the Rapid Production and Dissemination of Mouse Intersectional Genetic Alleles for Functional, Molecular, and Anatomical Neural Circuit Mapping. (mouseintersectionalgenetics.org). FASEB Journal, 2020, 34, 1-1.	0.5	O
10	<i>Drosophila</i> Heterochromatin Stabilization Requires the Zinc-Finger Protein Small Ovary. Genetics, 2019, 213, 877-895.	2.9	15
11	Examining multiple cellular pathways at once using multiplex hextuple luciferase assaying. Nature Communications, 2019, 10, 5710.	12.8	43
12	Homology Requirements for Efficient, Footprintless Gene Editing at the CFTR Locus in Human iPSCs with Helper-dependent Adenoviral Vectors. Molecular Therapy - Nucleic Acids, 2016, 5, e372.	5.1	12
13	Genome engineering: <i>Drosophila melanogaster</i> and beyond. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 233-267.	5.9	35
14	A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. ELife, 2015, 4, .	6.0	320
15	Loss of SPARC dysregulates basal lamina assembly to disrupt larval fat body homeostasis in <i>Drosophila melanogaster</i>). Developmental Dynamics, 2015, 244, 540-552.	1.8	41
16	Gene-specific cell labeling using MiMIC transposons. Nucleic Acids Research, 2015, 43, e56-e56.	14.5	80
17	Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods, 2014, 68, 15-28.	3.8	65
18	Large-scale identification of chemically induced mutations in <i>Drosophila melanogaster</i> Genome Research, 2014, 24, 1707-1718.	5 . 5	67

#	Article	IF	CITATIONS
19	miR-9a Minimizes the Phenotypic Impact of Genomic Diversity by Buffering a Transcription Factor. Cell, 2013, 155, 1556-1567.	28.9	99
20	A Mouse Model of Acrodermatitis Enteropathica: Loss of Intestine Zinc Transporter ZIP4 (Slc39a4) Disrupts the Stem Cell Niche and Intestine Integrity. PLoS Genetics, 2012, 8, e1002766.	3.5	118
21	Stringent Analysis of Gene Function and Protein–Protein Interactions Using Fluorescently Tagged Genes. Genetics, 2012, 190, 931-940.	2.9	92
22	An Assay to Detect <i>In Vivo</i> Y Chromosome Loss in <i>Drosophila</i> Wing Disc Cells. G3: Genes, Genomes, Genetics, 2012, 2, 1095-1102.	1.8	14
23	Spectraplakins Promote Microtubule-Mediated Axonal Growth by Functioning As Structural Microtubule-Associated Proteins and EB1-Dependent +TIPs (Tip Interacting Proteins). Journal of Neuroscience, 2012, 32, 9143-9158.	3.6	104
24	Genome-Wide Manipulations of Drosophila melanogaster with Transposons, Flp Recombinase, and $\hat{l} \mid C31$ Integrase. Methods in Molecular Biology, 2012, 859, 203-228.	0.9	65
25	<i>Drosophila</i> Neuroligin 2 is Required Presynaptically and Postsynaptically for Proper Synaptic Differentiation and Synaptic Transmission. Journal of Neuroscience, 2012, 32, 16018-16030.	3.6	60
26	MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nature Methods, 2011, 8, 737-743.	19.0	620
27	Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly. Neuron, 2011, 72, 202-230.	8.1	395
28	A cis-regulatory map of the Drosophila genome. Nature, 2011, 471, 527-531.	27.8	477
28	A cis-regulatory map of the Drosophila genome. Nature, 2011, 471, 527-531. Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance. PLoS ONE, 2011, 6, e22956.	27.8	477
29	Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance. PLoS ONE, 2011, 6, e22956. A Molecularly Defined Duplication Set for the X Chromosome of <i>Drosophila melanogaster</i>	2.5	48
30	Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance. PLoS ONE, 2011, 6, e22956. A Molecularly Defined Duplication Set for the X Chromosome of <i>Drosophila melanogaster</i> Genetics, 2010, 186, 1111-1125. Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i>	2.5	48 97
29 30 31	Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance. PLoS ONE, 2011, 6, e22956. A Molecularly Defined Duplication Set for the X Chromosome of <i>Drosophila melanogaster</i> Genetics, 2010, 186, 1111-1125. Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> Science, 2010, 330, 1787-1797. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nature	2.5 2.9 12.6	48 97 1,124
29 30 31 32	Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance. PLoS ONE, 2011, 6, e22956. A Molecularly Defined Duplication Set for the X Chromosome of <i>Drosophila melanogaster</i> Genetics, 2010, 186, 1111-1125. Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> Science, 2010, 330, 1787-1797. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nature Methods, 2009, 6, 431-434. Tweek, an Evolutionarily Conserved Protein, Is Required for Synaptic Vesicle Recycling. Neuron, 2009,	2.5 2.9 12.6 19.0	48 97 1,124 375
29 30 31 32	Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance. PLoS ONE, 2011, 6, e22956. A Molecularly Defined Duplication Set for the X Chromosome of <i>Drosophila melanogaster</i> Genetics, 2010, 186, 1111-1125. Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> Science, 2010, 330, 1787-1797. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nature Methods, 2009, 6, 431-434. Tweek, an Evolutionarily Conserved Protein, Is Required for Synaptic Vesicle Recycling. Neuron, 2009, 63, 203-215. Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and	2.5 2.9 12.6 19.0	48 97 1,124 375

#	Article	IF	CITATIONS
37	Transgenesis upgrades for <i>Drosophila melanogaster </i> . Development (Cambridge), 2007, 134, 3571-3584.	2.5	133
38	P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster. Science, 2006, 314, 1747-1751.	12.6	1,242
39	Emerging technologies for gene manipulation in Drosophila melanogaster. Nature Reviews Genetics, 2005, 6, 167-178.	16.3	186
40	Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes and Development, 2005, 19, 2412-2417.	5.9	267
41	The AXH Domain of Ataxin-1 Mediates Neurodegeneration through Its Interaction with Gfi-1/Senseless Proteins. Cell, 2005, 122, 633-644.	28.9	189
42	Synaptic Mitochondria Are Critical for Mobilization of Reserve Pool Vesicles at Drosophila Neuromuscular Junctions. Neuron, 2005, 47, 365-378.	8.1	734
43	Growth Factor Independence-1 Is Expressed in Primary Human Neuroendocrine Lung Carcinomas and Mediates the Differentiation of Murine Pulmonary Neuroendocrine Cells. Cancer Research, 2004, 64, 6874-6882.	0.9	71
44	Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1. Human Molecular Genetics, 2003, 12, 2789-2795.	2.9	54
45	The zinc finger transcription factorGfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development (Cambridge), 2003, 130, 221-232.	2.5	233
46	Search for mutations in the EGR2 corepressor proteins, NAB1 and NAB2, in human peripheral neuropathies. Neurogenetics, 2002, 4, 37-41.	1.4	9
47	Caspr1/Paranodin/Neurexin IV is most likely not a common disease-causing gene for inherited peripheral neuropathies. NeuroReport, 2001, 12, 2609-2614.	1.2	3