
Roberto Weigert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7535218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted Killing of Cancer Cells <i>in Vivo</i> and <i>in Vitro</i> with EGF-Directed Carbon Nanotube-Based Drug Delivery. ACS Nano, 2009, 3, 307-316.	14.6	796
2	CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature, 1999, 402, 429-433.	27.8	314
3	Characterization of a Nonclathrin Endocytic Pathway: Membrane Cargo and Lipid Requirements. Molecular Biology of the Cell, 2004, 15, 3542-3552.	2.1	276
4	M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway. Journal of Cell Biology, 2013, 202, 951-966.	5.2	269
5	Neutral Lipid Stores and Lipase PNPLA5 Contribute to Autophagosome Biogenesis. Current Biology, 2014, 24, 609-620.	3.9	213
6	Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nature Medicine, 2013, 19, 1281-1287.	30.7	212
7	CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. Journal of Clinical Investigation, 2013, 123, 5035-5051.	8.2	190
8	Discovery of New Cargo Proteins that Enter Cells through Clathrinâ€Independent Endocytosis. Traffic, 2009, 10, 590-599.	2.7	170
9	Multiple roles for the actin cytoskeleton during regulated exocytosis. Cellular and Molecular Life Sciences, 2013, 70, 2099-2121.	5.4	160
10	Semaphorin 3E Initiates Antiangiogenic Signaling through Plexin D1 by Regulating Arf6 and R-Ras. Molecular and Cellular Biology, 2010, 30, 3086-3098.	2.3	141
11	Decreased Lymphangiogenesis and Lymph Node Metastasis by mTOR Inhibition in Head and Neck Cancer. Cancer Research, 2011, 71, 7103-7112.	0.9	138
12	A Synthetic Biology Approach Reveals a CXCR4-G ₁₃ -Rho Signaling Axis Driving Transendothelial Migration of Metastatic Breast Cancer Cells. Science Signaling, 2011, 4, ra60.	3.6	126
13	Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5254-5259.	7.1	111
14	A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis. Proceedings of the United States of America, 2003, 100, 13314-13319.	7.1	110
15	Imaging cell biology in live animals: Ready for prime time. Journal of Cell Biology, 2013, 201, 969-979.	5.2	110
16	Intravital microscopy: a novel tool to study cell biology in living animals. Histochemistry and Cell Biology, 2010, 133, 481-491.	1.7	109
17	Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13552-13557.	7.1	109
18	Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nature Genetics, 2010, 42, 676-683.	21.4	102

#	Article	IF	CITATIONS
19	Tumor-Associated Macrophages Derived from Circulating Inflammatory Monocytes Degrade Collagen through Cellular Uptake. Cell Reports, 2017, 21, 3662-3671.	6.4	99
20	Intravital microscopy. Bioarchitecture, 2012, 2, 143-157.	1.5	96
21	ONC201 kills breast cancer cells <i>in vitro</i> by targeting mitochondria. Oncotarget, 2018, 9, 18454-18479.	1.8	77
22	Arp2/3-mediated F-actin formation controls regulated exocytosis in vivo. Nature Communications, 2015, 6, 10098.	12.8	76
23	Melanoregulin regulates a shedding mechanism that drives melanosome transfer from melanocytes to keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2101-9.	7.1	74
24	Direct Regulation of Alternative Splicing by SMAD3 through PCBP1 Is Essential to the Tumor-Promoting Role of TGF-β. Molecular Cell, 2016, 64, 549-564.	9.7	70
25	Kinetics of milk lipid droplet transport, growth, and secretion revealed by intravital imaging: lipid droplet release is intermittently stimulated by oxytocin. Molecular Biology of the Cell, 2017, 28, 935-946.	2.1	68
26	A Role for a CXCR2/Phosphatidylinositol 3-Kinase Î ³ Signaling Axis in Acute and Chronic Vascular Permeability. Molecular and Cellular Biology, 2009, 29, 2469-2480.	2.3	67
27	Intravital microscopy as a tool to study drug delivery in preclinical studies. Advanced Drug Delivery Reviews, 2011, 63, 119-128.	13.7	66
28	Rab25 Regulates Invasion and Metastasis in Head and Neck Cancer. Clinical Cancer Research, 2013, 19, 1375-1388.	7.0	64
29	SDFâ€1/CXCL12 induces directional cell migration and spontaneous metastasis via a CXCR4/Gαi/mTORC1 axis. FASEB Journal, 2015, 29, 1056-1068.	0.5	64
30	Myosin Vc Is a Molecular Motor That Functions in Secretory Granule Trafficking. Molecular Biology of the Cell, 2009, 20, 4471-4488.	2.1	60
31	The effect of hypusine modification on the intracellular localization of eIF5A. Biochemical and Biophysical Research Communications, 2009, 383, 497-502.	2.1	55
32	Intravital Twoâ€Photon Microscopy for Studying the Uptake and Trafficking of Fluorescently Conjugated Molecules in Live Rodents. Traffic, 2008, 9, 1801-1810.	2.7	54
33	Concerted actions of distinct nonmuscle myosin II isoforms drive intracellular membrane remodeling in live animals. Journal of Cell Biology, 2017, 216, 1925-1936.	5.2	52
34	Role of NAD+ and ADP-Ribosylation in the Maintenance of the Golgi Structure. Journal of Cell Biology, 1997, 139, 1109-1118.	5.2	50
35	Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo. Hepatology, 2016, 64, 1317-1329.	7.3	45
36	Expression of plasmid DNA in the salivary gland epithelium: novel approaches to study dynamic cellular processes in live animals. American Journal of Physiology - Cell Physiology, 2009, 297, C1347-C1357.	4.6	42

#	Article	IF	CITATIONS
37	The cyclooxygenaseâ€2 pathway <i>via</i> the PGE ₂ EP2 receptor contributes to oligodendrocytes apoptosis in cuprizoneâ€induced demyelination. Journal of Neurochemistry, 2012, 121, 418-427.	3.9	38
38	InÂVivo Tissue-wide Synchronization of Mitochondrial Metabolic Oscillations. Cell Reports, 2014, 9, 514-521.	6.4	38
39	Altered Endosome Biogenesis in Prostate Cancer Has Biomarker Potential. Molecular Cancer Research, 2014, 12, 1851-1862.	3.4	37
40	Cyclooxygenase-1 is involved in the inhibition of hippocampal neurogenesis after lipopolysaccharide-induced neuroinflammation. Cell Cycle, 2011, 10, 2568-2573.	2.6	36
41	Collective cancer cell invasion requires RNA accumulation at the invasive front. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27423-27434.	7.1	35
42	Sinusoidal ephrin receptor EPHB4 controls hematopoietic progenitor cell mobilization from bone marrow. Journal of Clinical Investigation, 2016, 126, 4554-4568.	8.2	35
43	Regulated Exocytosis: Novel Insights from Intravital Microscopy. Traffic, 2012, 13, 627-634.	2.7	34
44	A CCR2 macrophage endocytic pathway mediates extravascular fibrin clearance in vivo. Blood, 2016, 127, 1085-1096.	1.4	33
45	Intravital microscopy in mammalian multicellular organisms. Current Opinion in Cell Biology, 2019, 59, 97-103.	5.4	30
46	Homeostasis of the apical plasma membrane during regulated exocytosis in the salivary glands of live rodents. Bioarchitecture, 2011, 1, 225-229.	1.5	23
47	Mitochondrial Populations Exhibit Differential Dynamic Responses to Increased Energy Demand during Exocytosis InÂVivo. IScience, 2019, 11, 440-449.	4.1	23
48	A role for keratins in supporting mitochondrial organization and function in skin keratinocytes. Molecular Biology of the Cell, 2020, 31, 1103-1111.	2.1	22
49	Intravital Microscopy to Image Membrane Trafficking in Live Rats. Methods in Molecular Biology, 2012, 931, 153-167.	0.9	21
50	Intravital Microscopy Reveals Differences in the Kinetics of Endocytic Pathways between Cell Cultures and Live Animals. Cells, 2012, 1, 1121-1132.	4.1	20
51	Dynamic polyhedral actomyosin lattices remodel micron-scale curved membranes during exocytosis in live mice. Nature Cell Biology, 2019, 21, 933-939.	10.3	19
52	The LTB4–BLT1 axis regulates actomyosin and β2-integrin dynamics during neutrophil extravasation. Journal of Cell Biology, 2020, 219, .	5.2	19
53	Nanoarchitecture and dynamics of the mouse enteric glycocalyx examined by freeze-etching electron tomography and intravital microscopy. Communications Biology, 2020, 3, 5.	4.4	18
54	Calcineurin inhibitors suppress acute graft-versus-host disease via NFAT-independent inhibition of T cell receptor signaling. Journal of Clinical Investigation, 2021, 131, .	8.2	18

#	Article	IF	CITATIONS
55	Linking differences in membrane tension with the requirement for a contractile actomyosin scaffold during exocytosis in salivary glands. Communicative and Integrative Biology, 2012, 5, 84-87.	1.4	17
56	Plasmid DNA is internalized from the apical plasma membrane of the salivary gland epithelium in live animals. Histochemistry and Cell Biology, 2012, 138, 201-213.	1.7	17
57	Intravital Microscopy for Imaging Subcellular Structures in Live Mice Expressing Fluorescent Proteins. Journal of Visualized Experiments, 2013, , .	0.3	17
58	Parallel assembly of actin and tropomyosin but not myosin II during <i>de novo</i> actin filament formation in live mice. Journal of Cell Science, 2018, 131, .	2.0	15
59	Cdc42 negatively regulates endocytosis during apical membrane maintenance in live animals. Molecular Biology of the Cell, 2019, 30, 324-332.	2.1	15
60	Fluorescent Microscopyâ€Based Assays to Study the Role of Rab22a in Clathrinâ€Independent Endocytosis. Methods in Enzymology, 2005, 403, 243-253.	1.0	14
61	Imaging the Dynamics of Endocytosis in Live Mammalian Tissues. Cold Spring Harbor Perspectives in Biology, 2014, 6, a017012-a017012.	5.5	13
62	Imaging membrane remodeling during regulated exocytosis in live mice. Experimental Cell Research, 2015, 337, 219-225.	2.6	11
63	ER/Golgi trafficking is facilitated by unbranched actin filaments containing Tpm4.2. Cytoskeleton, 2017, 74, 379-389.	2.0	11
64	Welcome toIntraVital. Intravital, 2012, 1, 1-1.	2.0	10
65	Implanted biomaterials: Dissecting fibrosis. Nature Biomedical Engineering, 2017, 1, .	22.5	9
66	Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice. Frontiers in Immunology, 2017, 8, 343.	4.8	9
67	The Actomyosin Cytoskeleton Drives Micronâ€Scale Membrane Remodeling In Vivo Via the Generation of Mechanical Forces to Balance Membrane Tension Gradients. BioEssays, 2018, 40, e1800032.	2.5	9
68	Non-invasive intravital imaging of head and neck squamous cell carcinomas in live mice. Methods, 2017, 128, 3-11.	3.8	8
69	Endosomes Derived from Clathrin-Independent Endocytosis Serve as Precursors for Endothelial Lumen Formation. PLoS ONE, 2013, 8, e81987.	2.5	7
70	Transduction of Salivary Gland Acinar Cells with a Novel AAV Vector 44.9. Molecular Therapy - Methods and Clinical Development, 2020, 19, 459-466.	4.1	7
71	Polyethylenimine-mediated expression of transgenes in the acinar cells of rats salivary glands in vivo. Frontiers in Cell and Developmental Biology, 2015, 2, 74.	3.7	5
72	Toward inÂvivo two-photon analysis of mouse aqueous outflow structure and function. Experimental Eye Research, 2017, 158, 161-170.	2.6	5

#	Article	IF	CITATIONS
73	Bacterial challenge initiates endosome-lysosome response in <i>Dr</i> o <i>sophila</i> immune tissues. Intravital, 2013, 2, e23889.	2.0	4
74	The butyrophilin 1a1 knockout mouse revisited: Ablation of <i>Btn1a1</i> leads to concurrent cell death and renewal in the mammary epithelium during lactation. FASEB BioAdvances, 2021, 3, 971-997.	2.4	4
75	Probing the Role of the Actin Cytoskeleton During Regulated Exocytosis by Intravital Microscopy. Methods in Molecular Biology, 2014, 1174, 407-421.	0.9	4
76	Internalization of fluorescent dextrans in the submandibular salivary glands of live animals: a study combining intravital two-photon microscopy and second harmonic generation. , 2008, , .		3
77	Pak1 Kinase Promotes Activated T Cell Trafficking by Regulating the Expression of L-Selectin and CCR7. Frontiers in Immunology, 2019, 10, 370.	4.8	3
78	Cdc42 controls secretory granules morphology in rodent salivary glands in vivo. Communicative and Integrative Biology, 2020, 13, 22-26.	1.4	3
79	Intravital Imaging of the Lactating Mammary Gland in Transgenic Mice Expressing Fluorescent Proteins. , 2014, , 187-204.		3
80	Isoform-specific roles of NMII drive membrane remodeling <i>in vivo</i> . Cell Cycle, 2017, 16, 1851-1852.	2.6	1
81	Method for Acute Intravital Imaging of the in Live Mice. Methods in Molecular Biology, 2021, 2304, 285-299.	0.9	1
82	Cover Image, Volume 74, Issue 10. Cytoskeleton, 2017, 74, C4.	2.0	0