Eva Zurek ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/7534458/publications.pdf Version: 2024-02-01 162 11,781 42 104 papers citations h-index g-index 175 175 175 15471 all docs docs citations times ranked citing authors | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | The 2021 room-temperature superconductivity roadmap. Journal of Physics Condensed Matter, 2022, 34, 183002. | 1.8 | 79 | | 2 | Interplay of Halogen and Weak Hydrogen Bonds in the Formation of Magic Nanoclusters on Surfaces. Journal of Physical Chemistry C, 2022, 126, 588-596. | 3.1 | 7 | | 3 | Halogen and structure sensitivity of halobenzene adsorption on copper surfaces. Physical Chemistry Chemical Physics, 2022, 24, 4485-4492. | 2.8 | 2 | | 4 | Insight into the Adsorption Structure of TIPS-Pentacene on Noble Metal Surfaces. Journal of Physical Chemistry C, 2022, 126, 2689-2698. | 3.1 | 0 | | 5 | Tuning chemical precompression: Theoretical design and crystal chemistry of novel hydrides in the quest for warm and light superconductivity at ambient pressures. Journal of Applied Physics, 2022, 131, | 2.5 | 33 | | 6 | Nature of the bonded-to-atomic transition in liquid silica to TPa pressures. Journal of Applied Physics, 2022, 131, . | 2.5 | 4 | | 7 | Superfast Tetrazole–BCN Cycloaddition Reaction for Bioorthogonal Protein Labeling on Live Cells.
Journal of the American Chemical Society, 2022, 144, 57-62. | 13.7 | 23 | | 8 | Structural Diversity and Superconductivity in Sâ \in "Pâ \in "H Ternary Hydrides under Pressure. Journal of Physical Chemistry C, 2022, 126, 7208-7220. | 3.1 | 8 | | 9 | Dilute carbon in H3S under pressure. Npj Computational Materials, 2022, 8, . | 8.7 | 9 | | 10 | Materials under high pressure: a chemical perspective. Applied Physics A: Materials Science and Processing, 2022, 128, 1. | 2.3 | 15 | | 11 | Computational materials discovery. Journal of Chemical Physics, 2022, 156, . | 3.0 | 2 | | 12 | The Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon Allotropes at Ambient Pressure. Angewandte Chemie - International Edition, 2022, 61, . | 13.8 | 5 | | 13 | The Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon Allotropes at Ambient Pressure. Angewandte Chemie, 2022, 134, . | 2.0 | 3 | | 14 | The XtalOpt Evolutionary Algorithm for Crystal Structure Prediction. Journal of Physical Chemistry C, 2021, 125, 1601-1620. | 3.1 | 42 | | 15 | An electrochemically controlled release of NHCs using iron bis(dithiolene) N-heterocyclic carbene complexes. Inorganic Chemistry Frontiers, 2021, 8, 59-71. | 6.0 | 4 | | 16 | Copper-catalyzed enantioselective alkene carboetherification for the synthesis of saturated six-membered cyclic ethers. Chemical Communications, 2021, 57, 10099-10102. | 4.1 | 8 | | 17 | Fluorides of Silver Under Large Compression**. Chemistry - A European Journal, 2021, 27, 5536-5545. | 3.3 | 14 | | 18 | Superalkali–Alkalide Interactions and Ion Pairing in Low-Polarity Solvents. Journal of the American Chemical Society, 2021, 143, 3934-3943. | 13.7 | 17 | | # | Article | IF | Citations | |----|---|------|-----------| | 19 | Synthesis of Yttrium Superhydride Superconductor with a Transition Temperature up to 262ÂK by Catalytic Hydrogenation at High Pressures. Physical Review Letters, 2021, 126, 117003. | 7.8 | 165 | | 20 | The Li–F–H ternary system at high pressures. Journal of Chemical Physics, 2021, 154, 124709. | 3.0 | 2 | | 21 | Pressure-induced yttrium oxides with unconventional stoichiometries and novel properties. Physical Review Materials, 2021, 5, . | 2.4 | 8 | | 22 | Structural motifs and bonding in two families of boron structures predicted at megabar pressures. Physical Review Materials, 2021, 5, . | 2.4 | 8 | | 23 | Reliable folding of hybrid tetrapeptides into short \hat{l}^2 -hairpins. Chinese Chemical Letters, 2021, , . | 9.0 | 0 | | 24 | Surface Magnetism in Pristine \hat{l}_{\pm} Rhombohedral Boron and Intersurface Exchange Coupling Mechanism of Boron Icosahedra. Journal of Physical Chemistry Letters, 2021, 12, 6812-6817. | 4.6 | 5 | | 25 | Laserâ€Induced Cooperative Transition in Molecular Electronic Crystal. Advanced Materials, 2021, 33, e2103000. | 21.0 | 6 | | 26 | Electronic Structure and Superconductivity of Compressed Metal Tetrahydrides. Chemistry - A European Journal, 2021, 27, 14858-14870. | 3.3 | 11 | | 27 | Stable pseudo[3]rotaxanes with strong positive binding cooperativity based on shape-persistent aromatic oligoamide macrocycles. Chemical Communications, 2021, 57, 11645-11648. | 4.1 | 7 | | 28 | Laserâ€Induced Cooperative Transition in Molecular Electronic Crystal (Adv. Mater. 39/2021). Advanced Materials, 2021, 33, . | 21.0 | 0 | | 29 | Nano-makisu: highly anisotropic two-dimensional carbon allotropes made by weaving together nanotubes. Nanoscale, 2020, 12, 347-355. | 5.6 | 3 | | 30 | Self-Assembly and Molecular Recognition in Water: Tubular Stacking and Guest-Templated Discrete Assembly of Water-Soluble, Shape-Persistent Macrocycles. Journal of the American Chemical Society, 2020, 142, 2915-2924. | 13.7 | 44 | | 31 | Compression of curium pyrrolidine-dithiocarbamate enhances covalency. Nature, 2020, 583, 396-399. | 27.8 | 34 | | 32 | A Metastable CaSH ₃ Phase Composed of HS Honeycomb Sheets that is Superconducting Under Pressure. Journal of Physical Chemistry Letters, 2020, 11, 9629-9636. | 4.6 | 23 | | 33 | Chemistry under high pressure. Nature Reviews Chemistry, 2020, 4, 508-527. | 30.2 | 117 | | 34 | Major Factors for the Persistent Folding of Hybrid \hat{l}_{\pm} , \hat | 3.6 | 2 | | 35 | Predicted CsSi compound: a promising material for photovoltaic applications. Physical Chemistry Chemical Physics, 2020, 22, 11578-11582. | 2.8 | 7 | | 36 | RbB ₃ Si ₃ : An Alkali Metal Borosilicide that is Metastable and Superconducting at 1 atm. Journal of Physical Chemistry C, 2020, 124, 14826-14831. | 3.1 | 9 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 37 | Pressure-Induced Superconductivity in the Wide-Band-Gap Semiconductor Cu2Br2Se6 with a Robust Framework. Chemistry of Materials, 2020, 32, 6237-6246. | 6.7 | 6 | | 38 | M-graphene: a metastable two-dimensional carbon allotrope. 2D Materials, 2020, 7, 025047. | 4.4 | 30 | | 39 | Reverse Turn Foldamers: An Expanded β-Turn Motif Reinforced by Double Hydrogen Bonds. Organic
Letters, 2020, 22, 1003-1007.
Route to high- <mmi:math< td=""><td>4.6</td><td>9</td></mmi:math<> | 4.6 | 9 | | 40 | xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi>T</mml:mi><mml:mi>c</mml:mi> superconductivity via <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CH</mml:mi><mml:mn>4<td></td><td></td></mml:mn></mml:msub></mml:math></mml:msub> | | | | 41 | xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub></mml:msub></mml:mrow> | | | | # | Article | lF | CITATIONS | |----|--|-------------|-----------| | 55 | High Hydrides of Scandium under Pressure: Potential Superconductors. Journal of Physical Chemistry C, 2018, 122, 6298-6309. | 3.1 | 83 | | 56 | Crystal Structures and Electronic Properties of Xe–Cl Compounds at High Pressure. Journal of Physical Chemistry C, 2018, 122, 2941-2950. | 3.1 | 7 | | 57 | XtalOptÂversion r11: An open-source evolutionary algorithm for crystal structure prediction.
Computer Physics Communications, 2018, 222, 418-419. | 7.5 | 11 | | 58 | Extended $\tilde{HA}^{1/4}$ ckel Calculations on Solids Using the Avogadro Molecular Editor and Visualizer. Journal of Chemical Education, 2018, 95, 331-337. | 2.3 | 22 | | 59 | Materials genome approach to organic ferroelectrics and piezoelectrics. International Journal of Nanotechnology, 2018, 15, 784. | 0.2 | 1 | | 60 | The AFLOW Fleet for Materials Discovery. , 2018, , 1-28. | | 9 | | 61 | Crystal Structures and Properties of Iron Hydrides at High Pressure. Journal of Physical Chemistry C, 2018, 122, 24262-24269. | 3.1 | 24 | | 62 | Electrochemical Atomic Force Microscopy and First-Principles Calculations of Ferriprotoporphyrin Adsorption and Polymerization. Langmuir, 2018, 34, 11335-11346. | 3.5 | 0 | | 63 | AFLOW-ML: A RESTful API for machine-learning predictions of materials properties. Computational Materials Science, 2018, 152, 134-145. | 3.0 | 72 | | 64 | The Ideal Crystal Structure of Cristobalite X-I: A Bridge in SiO ₂ Densification. Journal of Physical Chemistry C, 2018, 122, 17437-17446. | 3.1 | 4 | | 65 | New Calcium Hydrides with Mixed Atomic and Molecular Hydrogen. Journal of Physical Chemistry C, 2018, 122, 19370-19378. | 3.1 | 38 | | 66 | A Review of Equation-of-State Models for Inertial Confinement Fusion Materials. High Energy Density Physics, 2018, 28, 7-24. | 1.5 | 54 | | 67 | Hydrides of the Alkali Metals and Alkaline Earth Metals Under Pressure. Comments on Inorganic Chemistry, 2017, 37, 78-98. | 5. 2 | 35 | | 68 | Superconductivity in Hydrides Doped with Main Group Elements Under Pressure. Novel Superconducting Materials, 2017, 3, . | 0.8 | 15 | | 69 | Graphene-like Boron–Carbon–Nitrogen Monolayers. ACS Nano, 2017, 11, 2486-2493. | 14.6 | 154 | | 70 | XtalOptÂVersion r10: An open–source evolutionary algorithm for crystal structure prediction. Computer Physics Communications, 2017, 217, 210-211. | 7. 5 | 11 | | 71 | Superconducting Phases of Phosphorus Hydride Under Pressure: Stabilization by Mobile Molecular Hydrogen. Angewandte Chemie, 2017, 129, 10326-10329. | 2.0 | 13 | | 72 | Helical Folding of <i>Meta</i> -Connected Aromatic Oligoureas. Organic Letters, 2017, 19, 2666-2669. | 4.6 | 11 | | # | Article | IF | Citations | |----|---|------|-----------| | 73 | Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu(111). Chemical Communications, 2017, 53, 8463-8466. | 4.1 | 36 | | 74 | RandSpg: An open-source program for generating atomistic crystal structures with specific spacegroups. Computer Physics Communications, 2017, 213, 208-216. | 7.5 | 30 | | 75 | Locking and Unlocking the Molecular Spin Crossover Transition. Advanced Materials, 2017, 29, 1702257. | 21.0 | 55 | | 76 | Accurate and precise <i>ab initio</i> anharmonic free-energy calculations for metallic crystals: Application to hcp Fe at high temperature and pressure. Physical Review B, 2017, 96, . | 3.2 | 25 | | 77 | Properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">B</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mi mathvariant="normal">C</mml:mi></mml:mrow></mml:math> in the shocked state for pressures up to | 3.2 | 10 | | 78 | Effects of Nonhydrostatic Stress on Structural and Optoelectronic Properties of Methylammonium Lead Bromide Perovskite. Journal of Physical Chemistry Letters, 2017, 8, 3457-3465. | 4.6 | 53 | | 79 | Superconducting Phases of Phosphorus Hydride Under Pressure: Stabilization by Mobile Molecular Hydrogen. Angewandte Chemie - International Edition, 2017, 56, 10192-10195. | 13.8 | 27 | | 80 | Equation of state, adiabatic sound speed, and $Gr\tilde{A}\frac{1}{4}$ neisen coefficient of boron carbide along the principal Hugoniot to 700 GPa. Physical Review B, 2016, 94, . | 3.2 | 24 | | 81 | Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides. Scientific Reports, 2016, 6, 23088. | 3.3 | 18 | | 82 | Electronic Structure of Iron Porphyrin Adsorbed to the Pt(111) Surface. Journal of Physical Chemistry C, 2016, 120, 29173-29181. | 3.1 | 13 | | 83 | Modulating Bond Lengths via Backdonation: A First-Principles Investigation of a Quinonoid
Zwitterion Adsorbed to Coinage Metal Surfaces. Journal of Physical Chemistry C, 2016, 120, 6633-6641. | 3.1 | 11 | | 84 | Nuclear Magnetic Resonance Measurements and Electronic Structure of Pu(IV) in [(Me) ₄ N] ₂ PuCl ₆ . Inorganic Chemistry, 2016, 55, 8371-8380. | 4.0 | 20 | | 85 | Computational prediction and analysis of the ²⁷ Al solid-state NMR spectrum of methylaluminoxane (MAO) at variable temperatures and field strengths. Physical Chemistry Chemical Physics, 2016, 18, 24106-24118. | 2.8 | 19 | | 86 | Decomposition Products of Phosphine Under Pressure: PH ₂ Stable and Superconducting?. Journal of the American Chemical Society, 2016, 138, 1884-1892. | 13.7 | 102 | | 87 | 2D Cocrystallization from H-Bonded Organic Ferroelectrics. Journal of Physical Chemistry Letters, 2016, 7, 435-440. | 4.6 | 19 | | 88 | Crystal Structures and Electronic Properties of Single-Layer, Few-Layer, and Multilayer GeH. Journal of Physical Chemistry C, 2016, 120, 793-800. | 3.1 | 18 | | 89 | XtalOpt Âversion r9: An open-source evolutionary algorithm for crystal structure prediction. Computer Physics Communications, 2016, 199, 178-179. | 7.5 | 16 | | 90 | Charge-Transfer-Induced Magic Cluster Formation of Azaborine Heterocycles on Noble Metal Surfaces. Journal of Physical Chemistry C, 2016, 120, 6020-6030. | 3.1 | 23 | | # | Article | IF | CITATIONS | |-----|---|-------------------------|---------------| | 91 | First principles investigation on how site preference and entropy affect the stability of (Eu _{<i>x</i>} Ge ₂ Pb (M = 1000) 1000 | Ca,) Tj E T.Q q1 | 1 0.₹84314 rg | | 92 | Structure and Proton-Transfer Mechanism in One-Dimensional Chains of Benzimidazoles. Journal of Physical Chemistry C, 2016, 120, 5804-5809. | 3.1 | 8 | | 93 | Electron Counting and a Large Family of Two-Dimensional Semiconductors. Chemistry of Materials, 2016, 28, 1994-1999. | 6.7 | 52 | | 94 | Theoretical Predictions of Novel Superconducting Phases of BaGe3 Stable at Atmospheric and High Pressures. Inorganic Chemistry, 2015, 54, 2875-2884. | 4.0 | 17 | | 95 | Interplay between Hydrogen Bonding, Epitaxy, and Charge Transfer in the Self-Assembly of Croconic Acid on Au(111) and Ag(111). Journal of Physical Chemistry C, 2015, 119, 26429-26437. | 3.1 | 9 | | 96 | DFT-D Investigation of Active and Dormant Methylaluminoxane (MAO) Species Grafted onto a Magnesium Dichloride Cluster: A Model Study of Supported MAO. ACS Catalysis, 2015, 5, 6989-6998. | 11.2 | 20 | | 97 | Identification of Polybrominated Diphenyl Ether Metabolites Based on Calculated Boiling Points from COSMO-RS, Experimental Retention Times, and Mass Spectral Fragmentation Patterns. Analytical Chemistry, 2015, 87, 2299-2305. | 6.5 | 29 | | 98 | Theoretical predictions of novel potassium chloride phases under pressure. Physical Chemistry Chemical Physics, 2015, 17, 12265-12272. | 2.8 | 6 | | 99 | Effect of BN/CC Isosterism on the Thermodynamics of Surface and Bulk Binding: 1,2-Dihydro-1,2-azaborine vs Benzene. Journal of Physical Chemistry C, 2015, 119, 14624-14631. | 3.1 | 11 | | 100 | Self-assembly of strongly dipolar molecules on metal surfaces. Journal of Chemical Physics, 2015, 142, 101921. | 3.0 | 38 | | 101 | Benzene derivatives adsorbed to the $Ag(111)$ surface: Binding sites and electronic structure. Journal of Chemical Physics, 2015, 142, 101924. | 3.0 | 22 | | 102 | Superconducting High-Pressure Phases Composed of Hydrogen and Iodine. Journal of Physical Chemistry Letters, 2015, 6, 4067-4072. | 4.6 | 41 | | 103 | Predicting crystal structures and properties of matter under extreme conditions via quantum mechanics: the pressure is on. Physical Chemistry Chemical Physics, 2015, 17, 2917-2934. | 2.8 | 99 | | 104 | The Dynamic Equilibrium Between (AlOMe) _{<i>n</i>} Cages and (AlOMe) _{<i>n</i>} Ai>n Ai>n Ai>n Ai>n Ai>n Methylaluminoxane (MAO): A First-Principles Investigation. Macromolecules, 2014, 47, 8556-8569. | 4.8 | 43 | | 105 | Chiral surface networks of 3-HPLN — A molecular analog of rounded triangle assembly. Surface Science, 2014, 629, 65-74. | 1.9 | 7 | | 106 | Enantioselective Copper atalyzed Carboetherification of Unactivated Alkenes. Angewandte Chemie - International Edition, 2014, 53, 6383-6387. | 13.8 | 88 | | 107 | Dimerization of cobalt-substituted Keggin phosphotungstate, [PW $<$ sub $>11sub>0<sub>39sub>Co(X)]<sup>5a^2sup>, in nonpolar solvents. Journal of Coordination Chemistry, 2014, 67, 2830-2842.$ | 2.2 | 2 | | 108 | Kagome-like lattice of π–π stacked 3-hydroxyphenalenone on Cu(111). Chemical Communications, 201 50, 8659-8662. | 4, 4.1 | 19 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 109 | Low energy structural dynamics and constrained libration of Li(NH ₃) ₄ , the lowest melting point metal. Chemical Communications, 2014, 50, 10778-10781. | 4.1 | 15 | | 110 | Composition and Constitution of Compressed Strontium Polyhydrides. Journal of Physical Chemistry C, 2014, 118, 6433-6447. | 3.1 | 59 | | 111 | Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum. Journal of Chemical Education, 2014, 91, 1058-1063. | 2.3 | 20 | | 112 | Determination of the Structures of Molecularly Imprinted Polymers and Xerogels Using an Automated Stochastic Approach. Analytical Chemistry, 2013, 85, 8577-8584. | 6.5 | 11 | | 113 | Coverage-Dependent Interactions at the Organics–Metal Interface: Quinonoid Zwitterions on Au(111).
Journal of Physical Chemistry C, 2013, 117, 16406-16415. | 3.1 | 21 | | 114 | A Computational Investigation of a Molecular Switch. Journal of Chemical Education, 2013, 90, 1528-1532. | 2.3 | 9 | | 115 | Rhodizonic Acid on Noble Metals: Surface Reactivity and Coordination Chemistry. Journal of Physical Chemistry Letters, 2013, 4, 3413-3419. | 4.6 | 14 | | 116 | Metallization of magnesium polyhydrides under pressure. Physical Review B, 2013, 87, . | 3.2 | 102 | | 117 | Computational Modeling of the Optical Rotation of Amino Acids: An in Silico' Experiment for Physical Chemistry. Journal of Chemical Education, 2013, 90, 656-660. | 2.3 | 15 | | 118 | Proton transfer in surface-stabilized chiral motifs of croconic acid. Physical Review B, 2013, 87, . | 3.2 | 22 | | 119 | A Computational Experiment on Single-Walled Carbon Nanotubes. Journal of Chemical Education, 2013, 90, 651-655. | 2.3 | 19 | | 120 | Polyhydrides of the Alkaline Earth Metals: A Look at the Extremes under Pressure. Journal of Physical Chemistry C, 2013, 117, 2982-2992. | 3.1 | 84 | | 121 | Pressure induced structural transitions in KH, RbH, and CsH. Journal of Applied Physics, 2012, 111, 112611. | 2.5 | 23 | | 122 | Compressed Cesium Polyhydrides: Cs ⁺ Sublattices and H ₃ [–] Three-Connected Nets. Inorganic Chemistry, 2012, 51, 9333-9342. | 4.0 | 54 | | 123 | Surface state engineering of molecule–molecule interactions. Physical Chemistry Chemical Physics, 2012, 14, 4971. | 2.8 | 56 | | 124 | Dipole driven bonding schemes of quinonoid zwitterions on surfaces. Chemical Communications, 2012, 48, 7143. | 4.1 | 31 | | 125 | Magic Electret Clusters of 4-Fluorostyrene on Metal Surfaces. Journal of Physical Chemistry Letters, 2012, 3, 2069-2075. | 4.6 | 22 | | 126 | High Pressure Potassium Polyhydrides: A Chemical Perspective. Journal of Physical Chemistry C, 2012, 116, 13322-13328. | 3.1 | 63 | | # | Article | IF | CITATIONS | |-----|---|--------------------|-------------| | 127 | Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 2012, 4, 17. | 6.1 | 6,063 | | 128 | Lithium Subhydrides under Pressure and Their Superatomâ€like Building Blocks. ChemPlusChem, 2012, 77, 969-972. | 2.8 | 30 | | 129 | Substituted Benzene Derivatives on the Cu(111) Surface. Journal of Physical Chemistry C, 2012, 116, 12636-12643. | 3.1 | 28 | | 130 | On the Nature of Ge–Pb Bonding in the Solid State. Synthesis, Structural Characterization, and Electronic Structures of Two Unprecedented Germanide-Plumbides. Journal of the American Chemical Society, 2012, 134, 12708-12716. | 13.7 | 10 | | 131 | Rubidium Polyhydrides Under Pressure: Emergence of the Linear H ₃ ^{â^'} Species. Chemistry - A European Journal, 2012, 18, 5013-5021. | 3.3 | 68 | | 132 | Identifying duplicate crystal structures: XtalComp, an open-source solution. Computer Physics Communications, 2012, 183, 690-697. | 7.5 | 71 | | 133 | xmlns:mml="http://www.w3.org/1998/Math/MathML"
display="inline"> <mml:msub><mml:mi>NaH</mml:mi><mml:mi>n</mml:mi></mml:msub> (<mml:n< td=""><td>nath) Tj ET
7.8</td><td>Qg] 1 0.784</td></mml:n<> | nath) Tj ET
7.8 | Qg] 1 0.784 | | 134 | Alkali Metals in Ethylenediamine: A Computational Study of the Optical Absorption Spectra and NMR Parameters of [M(en) ₃ ^{Î+} ·M ^{Îa^3}] Ion Pairs. Journal of the American Chemical Society, 2011, 133, 4829-4839. | 13.7 | 23 | | 135 | (Barely) Solid Li(NH ₃) ₄ : The Electronics of an Expanded Metal. Journal of the American Chemical Society, 2011, 133, 3535-3547. | 13.7 | 35 | | 136 | XtalOpt version r7: An open-source evolutionary algorithm for crystal structure prediction. Computer Physics Communications, 2011, 182, 2305-2306. | 7. 5 | 41 | | 137 | XtalOpt: An open-source evolutionary algorithm for crystal structure prediction. Computer Physics Communications, 2011, 182, 372-387. | 7.5 | 263 | | 138 | Searching for the Interlayer Band and Unravelling the Bonding in \hat{l}^2 -ThSi ₂ and \hat{l}_\pm -ThSi ₂ with <i>N</i> MTO Wannier-like Functions. Inorganic Chemistry, 2010, 49, 1384-1396. | 4.0 | 14 | | 139 | A little bit of lithium does a lot for hydrogen. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17640-17643. | 7.1 | 245 | | 140 | A Molecular Perspective on Lithium–Ammonia Solutions. Angewandte Chemie - International Edition, 2009, 48, 8198-8232. | 13.8 | 155 | | 141 | NMR computations for carbon nanotubes from first principles: Present status and future directions. International Journal of Quantum Chemistry, 2009, 109, 3343-3367. | 2.0 | 27 | | 142 | A Density Functional Study of the 13C NMR Chemical Shifts in Fluorinated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry A, 2009, 113, 4117-4124. | 2.5 | 28 | | 143 | Density Functional Study of the ¹³ C NMR Chemical Shifts in Single-Walled Carbon
Nanotubes with Stonea Wales Defects. Journal of Physical Chemistry C, 2008, 112, 11744-11750. | 3.1 | 56 | | 144 | Determining the Diameter of Functionalized Single-Walled Carbon Nanotubes with 13C NMR: A Theoretical Study. Journal of Physical Chemistry C, 2008, 112, 9267-9271. | 3.1 | 30 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 145 | Experimental and Theoretical Investigations of the Thermodynamic Stability of Baâ^'C ₆₀ and Kâ^'C ₆₀ Compound Clusters. ACS Nano, 2008, 2, 1000-1014. | 14.6 | 11 | | 146 | A Density Functional Study of the 13C NMR Chemical Shifts in Functionalized Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 4430-4439. | 13.7 | 47 | | 147 | Density Functional Studies of the [sup 13]C NMR Chemical Shifts in Single–Walled Carbon Nanotubes. AIP Conference Proceedings, 2007, , . | 0.4 | 1 | | 148 | Downfolding and N-ization of Basis Sets of Slater Type Orbitals. AIP Conference Proceedings, 2007, , . | 0.4 | 2 | | 149 | Density Functional Study of the 13C NMR Chemical Shifts in Small-to-Medium-Diameter Infinite Single-Walled Carbon Nanotubes. Journal of Physical Chemistry A, 2006, 110, 11995-12004. | 2.5 | 62 | | 150 | Magic alkali-fullerene compound clusters of extreme thermal stability. Journal of Chemical Physics, 2006, 125, 191102. | 3.0 | 10 | | 151 | Muffin-Tin Orbital Wannier-Like Functions for Insulators and Metals. ChemPhysChem, 2005, 6, 1934-1942. | 2.1 | 49 | | 152 | Density Functional Calculations of the 13C NMR Chemical Shifts in (9,0) Single-Walled Carbon Nanotubes ChemInform, 2004, 35, no. | 0.0 | 0 | | 153 | Theoretical studies of the structure and function of MAO (methylaluminoxane). Progress in Polymer Science, 2004, 29, 107-148. | 24.7 | 177 | | 154 | Density Functional Calculations of the 13C NMR Chemical Shifts in (9,0) Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126, 13079-13088. | 13.7 | 152 | | 155 | A theoretical study of the insertion barrier of MAO (methylaluminoxane)-activated, Cp2ZrMe2-catalyzed ethylene polymerization: further evidence for the structural assignment of active and dormant species. Faraday Discussions, 2003, 124, 93. | 3.2 | 43 | | 156 | Relativistic Density-Functional Computations of the Chemical Shift of 129Xe in Xe@C60. Journal of Physical Chemistry A, 2003, 107, 4967-4972. | 2.5 | 70 | | 157 | Toward the Identification of Dormant and Active Species in MAO (Methylaluminoxane)-Activated, Dimethylzirconocene-Catalyzed Olefin Polymerization. Organometallics, 2002, 21, 83-92. | 2.3 | 73 | | 158 | Theoretical Study of the Interactions between Cations and Anions in Group IV Transition-Metal Catalysts for Single-Site Homogeneous Olefin Polymerization. Organometallics, 2002, 21, 2444-2453. | 2.3 | 79 | | 159 | A Combined Quantum Mechanical and Statistical Mechanical Study of the Equilibrium of Trimethylaluminum (TMA) and Oligomers of (AlOCH3)nFound in Methylaluminoxane (MAO) Solution. Inorganic Chemistry, 2001, 40, 3279-3292. | 4.0 | 62 | | 160 | Modeling the Dynamic Equilibrium between Oligomers of (AlOCH3)n in Methylaluminoxane (MAO). A Theoretical Study Based on a Combined Quantum Mechanical and Statistical Mechanical Approach. Inorganic Chemistry, 2001, 40, 361-370. | 4.0 | 93 | | 161 | Modeling Methylaluminoxane (MAO). , 2001, , 109-123. | | 1 | | 162 | Pushing Towards Room-Temperature Superconductivity. Physics Magazine, 0, 12, . | 0.1 | 5 |