
Juan A Faraldos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7534084/publications.pdf Version: 2024-02-01

LUAN A FARALDOS

#	Article	IF	CITATIONS
1	Rational engineering of plasticity residues of sesquiterpene synthases from <i>Artemisia annua</i> : product specificity and catalytic efficiency. Biochemical Journal, 2013, 451, 417-426.	3.7	99
2	Conformational analysis of (+)-germacrene A by variable-temperature NMR and NOE spectroscopy. Tetrahedron, 2007, 63, 7733-7742.	1.9	72
3	Probing Eudesmane Cationâ~ï€ Interactions in Catalysis by Aristolochene Synthase with Non-canonical Amino Acids. Journal of the American Chemical Society, 2011, 133, 13906-13909.	13.7	72
4	X-ray Crystallographic Studies of Substrate Binding to Aristolochene Synthase Suggest a Metal Ion Binding Sequence for Catalysis. Journal of Biological Chemistry, 2008, 283, 15431-15439.	3.4	67
5	Structural Elucidation of Cisoid and Transoid Cyclization Pathways of a Sesquiterpene Synthase Using 2-Fluorofarnesyl Diphosphates. ACS Chemical Biology, 2010, 5, 377-392.	3.4	60
6	Mechanistic Insights from the Binding of Substrate and Carbocation Intermediate Analogues to Aristolochene Synthase. Biochemistry, 2013, 52, 5441-5453.	2.5	55
7	A 1,6-Ring Closure Mechanism for (+)-δ-Cadinene Synthase?. Journal of the American Chemical Society, 2012, 134, 5900-5908.	13.7	52
8	Emergence of terpene cyclization in Artemisia annua. Nature Communications, 2015, 6, 6143.	12.8	50
9	NOVEL STEROLS OF THE TOXIC DINOFLAGELLATE <i>KARENIA BREVIS</i> (DINOPHYCEAE): A DEFENSIVE FUNCTION FOR UNUSUAL MARINE STEROLS? ¹ . Journal of Phycology, 2003, 39, 315-319.	2.3	48
10	Doubly Deuterium-Labeled Patchouli Alcohol from Cyclization of Singly Labeled [2- ² H ₁]Farnesyl Diphosphate Catalyzed by Recombinant Patchoulol Synthase. Journal of the American Chemical Society, 2010, 132, 2998-3008.	13.7	46
11	An Efficient Chemoenzymatic Synthesis of Dihydroartemisinic Aldehyde. Angewandte Chemie - International Edition, 2017, 56, 4347-4350.	13.8	46
12	Interception of the Enzymatic Conversion of Farnesyl Diphosphate to 5â€Epiâ€Aristolochene by Using a Fluoro Substrate Analogue: 1â€Fluorogermacrene A from (2 <i>E</i> ,6 <i>Z</i>)â€6â€Fluorofarnesyl Diphosphate. ChemBioChem, 2007, 8, 1826-1833.	2.6	43
13	Chemoenzymatic preparation of germacrene analogues. Chemical Communications, 2012, 48, 9702.	4.1	40
14	Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases. MethodsX, 2014, 1, 187-196.	1.6	37
15	Bisabolyl-Derived Sesquiterpenes from Tobacco 5-Epi-aristolochene Synthase-Catalyzed Cyclization of (2Z,6E)-Farnesyl Diphosphate. Journal of the American Chemical Society, 2010, 132, 4281-4289.	13.7	35
16	Evolutionary and Mechanistic Insights from the Reconstruction of α-Humulene Synthases from a Modern (+)-Germacrene A Synthase. Journal of the American Chemical Society, 2014, 136, 14505-14512.	13.7	35
17	Discovery of germacrene A synthases in Barnadesia spinosa: The first committed step in sesquiterpene lactone biosynthesis in the basal member of the Asteraceae. Biochemical and Biophysical Research Communications, 2016, 479, 622-627.	2.1	24
18	Probing the Role of Active Site Water in the Sesquiterpene Cyclization Reaction Catalyzed by Aristolochene Synthase. Biochemistry, 2016, 55, 2864-2874.	2.5	22

JUAN A FARALDOS

#	Article	IF	CITATIONS
19	Intermediacy of Eudesmane Cation during Catalysis by Aristolochene Synthase. Journal of Organic Chemistry, 2010, 75, 1119-1125.	3.2	21
20	Biomimetic Synthesis of Petuniasterone D via the Epoxy Esterâ^'Ortho Ester Rearrangement. Journal of Organic Chemistry, 2002, 67, 4659-4666.	3.2	20
21	Inhibition of (+)-Aristolochene Synthase with Iminium Salts Resembling Eudesmane Cation. Organic Letters, 2011, 13, 1202-1205.	4.6	20
22	Scope and Mechanism of Intramolecular Aziridination of Cyclopent-3-enyl-methylamines to 1-Azatricyclo[2.2.1.0 ^{2,6}]heptanes with Lead Tetraacetate. Journal of the American Chemical Society, 2009, 131, 11998-12006.	13.7	19
23	Probing the Mechanism of 1,4-Conjugate Elimination Reactions Catalyzed by Terpene Synthases. Journal of the American Chemical Society, 2012, 134, 20844-20848.	13.7	19
24	Variation in Capsidiol Sensitivity between Phytophthora infestans and Phytophthora capsici Is Consistent with Their Host Range. PLoS ONE, 2014, 9, e107462.	2.5	19
25	A Biomimetic Approach to the Synthesis of an Antiviral Marine Steroidal Orthoester. Journal of Organic Chemistry, 2002, 67, 2717-2720.	3.2	17
26	Effiziente chemoenzymatische Synthese von Dihydroartemisinaldehyd. Angewandte Chemie, 2017, 129, 4411-4415.	2.0	17
27	Facile Orthoester Formation in a Model Compound of the Taxol Oxetane: Are Biologically Active Epoxy Esters, Orthoesters, and Oxetanyl Esters Latent Electrophiles?. Helvetica Chimica Acta, 2003, 86, 3613-3622.	1.6	15
28	Templating effects in aristolochene synthase catalysis: elimination versus cyclisation. Organic and Biomolecular Chemistry, 2011, 9, 6920.	2.8	14
29	The role of aristolochene synthase in diphosphate activation. Chemical Communications, 2012, 48, 3230.	4.1	14
30	Chemoenzymatic synthesis of the alarm pheromone (+)-verbenone from geranyl diphosphate. Chemical Communications, 2012, 48, 7040.	4.1	11
31	Alternative Synthesis of the Colorado Potato Beetle Pheromone. Journal of Organic Chemistry, 2013, 78, 10548-10554.	3.2	11
32	ent-Beyerane diterpenoids from the heartwood of Excoecaria parvifolia. Phytochemistry, 2007, 68, 546-553.	2.9	10
33	Synthesis and in vitro evaluation of taxol oxetane ring D precursors. Tetrahedron Letters, 2010, 51, 2017-2019.	1.4	10
34	2-Azapinanes: Aza Analogues of the Enantiomeric Pinyl Carbocation Intermediates in Pinene Biosynthesis. Organic Letters, 2011, 13, 836-839.	4.6	10
35	Enzymatic Resolution of 1-Phenylethanol and Formation of a Diastereomer: An Undergraduate ¹ H NMR Experiment To Introduce Chiral Chemistry. Journal of Chemical Education, 2011, 88, 334-336.	2.3	10
36	The amino-terminal segment in the β-domain of δ-cadinene synthase is essential for catalysis. Organic and Biomolecular Chemistry, 2016, 14, 7451-7454.	2.8	10

#	Article	IF	CITATIONS
37	REVIEW: Epistasis and dominance in the emergence of catalytic function as exemplified by the evolution of plant terpene synthases. Plant Science, 2017, 255, 29-38.	3.6	10
38	Enzymatic synthesis of natural (+)-aristolochene from a non-natural substrate. Chemical Communications, 2016, 52, 14027-14030.	4.1	6