Till Ischebeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7533758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of glyphosateâ€resistant <i>Burkholderia anthina</i> and <i>Burkholderia cenocepacia</i> isolates from a commercial Roundup® solution. Environmental Microbiology Reports, 2022, 14, 70-84.	2.4	11
2	DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. New Phytologist, 2022, 233, 2185-2202.	7.3	8
3	Sustained Control of Pyruvate Carboxylase by the Essential Second Messenger Cyclic di-AMP in Bacillus subtilis. MBio, 2022, , e0360221.	4.1	11
4	SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet–plasma membrane tethering. Plant Cell, 2022, 34, 2424-2448.	6.6	12
5	Heat stress leads to rapid lipid remodeling and transcriptional adaptations in <i>Nicotiana tabacum</i> pollen tubes. Plant Physiology, 2022, , .	4.8	5
6	Cell wall-localized BETA-XYLOSIDASE4 contributes to immunity of Arabidopsis against <i>Botrytis cinerea</i> . Plant Physiology, 2022, 189, 1794-1813.	4.8	14
7	Multiâ€omics analysis of xylem sap uncovers dynamic modulation of poplar defenses by ammonium and nitrate. Plant Journal, 2022, 111, 282-303.	5.7	11
8	Finding new friends and revisiting old ones – how plant lipid droplets connect with other subcellular structures. New Phytologist, 2022, 236, 833-838.	7.3	12
9	Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nature Neuroscience, 2021, 24, 47-60.	14.8	134
10	Isolation of Lipid Droplets for Protein and Lipid Analysis. Methods in Molecular Biology, 2021, 2295, 295-320.	0.9	4
11	Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION 7 Localizes to Lipid Droplets via Its Senescence Domain. Frontiers in Plant Science, 2021, 12, 658961.	3.6	16
12	Sphingolipid longâ€chain base hydroxylation influences plant growth and callose deposition in <i>Physcomitrium patens</i> . New Phytologist, 2021, 231, 297-314.	7.3	14
13	LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. Plant Cell, 2021, 33, 3076-3103.	6.6	31
14	The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. Plant Journal, 2021, 107, 975-1002.	5.7	67
15	Essentiality of c-di-AMP in Bacillus subtilis: Bypassing mutations converge in potassium and glutamate homeostasis. PLoS Genetics, 2021, 17, e1009092.	3.5	28
16	Neuronal cholesterol synthesis is essential for repair of chronically demyelinated lesions in mice. Cell Reports, 2021, 37, 109889.	6.4	23
17	Plastidial wax ester biosynthesis as a tool to synthesize shorter and more saturated wax esters. Biotechnology for Biofuels, 2021, 14, 238.	6.2	1
18	SEIPIN Isoforms Interact with the Membrane-Tethering Protein VAP27-1 for Lipid Droplet Formation. Plant Cell, 2020, 32, 2932-2950.	6.6	39

TILL ISCHEBECK

#	Article	IF	CITATIONS
19	Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. Plants, 2020, 9, 1098.	3.5	22
20	Ties between Stress and Lipid Droplets Pre-date Seeds. Trends in Plant Science, 2020, 25, 1203-1214.	8.8	43
21	Identification of Low-Abundance Lipid Droplet Proteins in Seeds and Seedlings. Plant Physiology, 2020, 182, 1326-1345.	4.8	44
22	Lipid droplets in plants and algae: Distribution, formation, turnover and function. Seminars in Cell and Developmental Biology, 2020, 108, 82-93.	5.0	63
23	Coordinated Localization and Antagonistic Function of NtPLC3 and PI4P 5-Kinases in the Subapical Plasma Membrane of Tobacco Pollen Tubes. Plants, 2020, 9, 452.	3.5	9
24	Variants of the Bacillus subtilis LysR-Type Regulator GltC With Altered Activator and Repressor Function. Frontiers in Microbiology, 2019, 10, 2321.	3.5	7
25	A mass spectrometry workflow for measuring protein turnover rates in vivo. Nature Protocols, 2019, 14, 3333-3365.	12.0	22
26	Identification of the first glyphosate transporter by genomic adaptation. Environmental Microbiology, 2019, 21, 1287-1305.	3.8	36
27	Iron–sulfur protein NFU2 is required for branched-chain amino acid synthesis in Arabidopsis roots. Journal of Experimental Botany, 2019, 70, 1875-1889.	4.8	25
28	The green microalga Lobosphaera incisa harbours an arachidonate 15 S â€ l ipoxygenase. Plant Biology, 2019, 21, 131-142.	3.8	10
29	Characterization of the enzymatic activity and physiological function of the lipid dropletâ€associated triacylglycerol lipase At <scp>OBL</scp> 1. New Phytologist, 2018, 217, 1062-1076.	7.3	43
30	The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain. Scientific Reports, 2018, 8, 16913.	3.3	17
31	Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nature Communications, 2018, 9, 4230.	12.8	219
32	Dynamics of the Pollen Sequestrome Defined by Subcellular Coupled Omics. Plant Physiology, 2018, 178, 258-282.	4.8	23
33	PUX10 Is a Lipid Droplet-Localized Scaffold Protein That Interacts with CELL DIVISION CYCLE48 and Is Involved in the Degradation of Lipid Droplet Proteins. Plant Cell, 2018, 30, 2137-2160.	6.6	78
34	Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnology Advances, 2017, 35, 31-40.	11.7	54
35	Large-scale reduction of the <i>Bacillus subtilis</i> genome: consequences for the transcriptional network, resource allocation, and metabolism. Genome Research, 2017, 27, 289-299.	5.5	137
36	Tobacco pollen tubes – a fast and easy tool for studying lipid droplet association of plant proteins. Plant Journal, 2017, 89, 1055-1064.	5.7	29

TILL ISCHEBECK

#	Article	IF	CITATIONS
37	Arabidopsis lipid dropletâ€associated protein (LDAP) – interacting protein (<scp>LDIP</scp>) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant Journal, 2017, 92, 1182-1201.	5.7	71
38	Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases. Plant Journal, 2017, 92, 129-146.	5.7	40
39	Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa. BMC Plant Biology, 2017, 17, 98.	3.6	44
40	Lipid Composition in Arabidopsis thaliana Roots. , 2017, , 1-5.		1
41	Phosphatidylinositol (4)-Monophosphate in Plants. , 2017, , 1-4.		0
42	Diacylglycerol in Plants: Functional Diversity of. , 2017, , 1-4.		0
43	Lipid Composition of Arabidopsis thaliana Pollen. , 2017, , 1-5.		0
44	Phosphatidylinositols and Derivatives in Plants: Overview Of. , 2017, , 1-4.		0
45	Phosphatidylinositol (4,5)-Bisphosphate in Plants. , 2017, , 1-4.		0
46	Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites. PLoS ONE, 2016, 11, e0167627.	2.5	26
47	Lipids in pollen — They are different. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1315-1328.	2.4	89
48	Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism. Plant Biotechnology Journal, 2016, 14, 1883-1898.	8.3	74
49	Hydrogen sulfide is a novel potential virulence factor of <scp><i>M</i></scp> <i>ycoplasma pneumoniae</i> : characterization of the unusual cysteine desulfurase/desulfhydrase HapE. Molecular Microbiology, 2016, 100, 42-54.	2.5	48
50	Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. Plant Reproduction, 2016, 29, 3-20.	2.2	50
51	Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum. PLoS ONE, 2016, 11, e0164673.	2.5	70
52	Lipid Composition of Arabidopsis thaliana Pollen. , 2016, , 1-5.		1
53	Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate in <scp><i>B</i></scp> <i>acillus subtilis</i> . Environmental Microbiology, 2015, 17, 3379-3390.	3.8	35
54	Vacuolar CBL-CIPK12 Ca2+-Sensor-Kinase Complexes Are Required for Polarized Pollen Tube Growth. Current Biology, 2015, 25, 1475-1482.	3.9	63

TILL ISCHEBECK

#	Article	IF	CITATIONS
55	Comprehensive Cell-specific Protein Analysis in Early and Late Pollen Development from Diploid Microsporocytes to Pollen Tube Growth. Molecular and Cellular Proteomics, 2014, 13, 295-310.	3.8	71
56	Metabolism and development – integration of micro computed tomography data and metabolite profiling reveals metabolic reprogramming from floral initiation to silique development. New Phytologist, 2014, 202, 322-335.	7.3	40
57	Phosphatidylinositol 4,5-Bisphosphate Influences PIN Polarization by Controlling Clathrin-Mediated Membrane Trafficking in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 25, 4894-4911.	6.6	158
58	Cell-specific Analysis of the Tomato Pollen Proteome from Pollen Mother Cell to Mature Pollen Provides Evidence for Developmental Priming. Journal of Proteome Research, 2013, 12, 4892-4903.	3.7	97
59	The Essential Phosphoinositide Kinase MSS-4 Is Required for Polar Hyphal Morphogenesis, Localizing to Sites of Growth and Cell Fusion in Neurospora crassa. PLoS ONE, 2012, 7, e51454.	2.5	30
60	Phosphatidylinositolâ€4,5â€bisphosphate influences Ntâ€Rac5â€mediated cell expansion in pollen tubes of <i>Nicotiana tabacum</i> . Plant Journal, 2011, 65, 453-468.	5.7	104
61	Variable Regions of PI4P 5-Kinases Direct PtdIns(4,5)P2 Toward Alternative Regulatory Functions in Tobacco Pollen Tubes. Frontiers in Plant Science, 2011, 2, 114.	3.6	38
62	At the poles across kingdoms: phosphoinositides and polar tip growth. Protoplasma, 2010, 240, 13-31.	2.1	102
63	Functional Cooperativity of Enzymes of Phosphoinositide Conversion According to Synergistic Effects on Pectin Secretion in Tobacco Pollen Tubes. Molecular Plant, 2010, 3, 870-881.	8.3	47
64	PIP-Kinases as Key Regulators of Plant Function. Plant Cell Monographs, 2010, , 79-93.	0.4	4
65	Type B Phosphatidylinositol-4-Phosphate 5-Kinases Mediate <i>Arabidopsis</i> and <i>Nicotiana tabacum</i> Pollen Tube Growth by Regulating Apical Pectin Secretion. Plant Cell, 2009, 20, 3312-3330.	6.6	169
66	The Type B Phosphatidylinositol-4-Phosphate 5-Kinase 3 Is Essential for Root Hair Formation in <i>Arabidopsis thaliana</i> . Plant Cell, 2008, 20, 124-141.	6.6	170
67	Alternative metabolic fates of phosphatidylinositol produced by phosphatidylinositol synthase isoforms in Arabidopsis thaliana. Biochemical Journal, 2008, 413, 115-124.	3.7	78
68	Salt-stress-induced association of phosphatidylinositol 4,5-bisphosphate with clathrin-coated vesicles in plants. Biochemical Journal, 2008, 415, 387-399.	3.7	114
69	Modulating seed Â-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4742-4747.	7.1	133
70	A Salvage Pathway for Phytol Metabolism in Arabidopsis. Journal of Biological Chemistry, 2006, 281, 2470-2477.	3.4	168