Zeng-Yei Hseu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7533/publications.pdf

Version: 2024-02-01

101 papers

3,505 citations

30 h-index 55 g-index

103 all docs

 $\begin{array}{c} 103 \\ \\ \text{docs citations} \end{array}$

103 times ranked

3986 citing authors

#	Article	IF	CITATIONS
1	Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology and Evolution, 2020, 4, 210-220.	7.8	543
2	Evaluating heavy metal contents in nine composts using four digestion methods. Bioresource Technology, 2004, 95, 53-59.	9.6	284
3	Changes in belowground biodiversity during ecosystem development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6891-6896.	7.1	151
4	Global ecological predictors of the soil priming effect. Nature Communications, 2019, 10, 3481.	12.8	148
5	Digestion Methods for Total Heavy Metals in Sediments and Soils. Water, Air, and Soil Pollution, 2002, 141, 189-205.	2.4	120
6	Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: New aspects for food safety regulation and sustainable agriculture. Soil Science and Plant Nutrition, 2010, 56, 31-52.	1.9	103
7	Pedogenic Chromium and Nickel Partitioning in Serpentine Soils along a Toposequence. Soil Science Society of America Journal, 2011, 75, 659-668.	2.2	84
8	Soil contamination by potentially toxic elements and the associated human health risk in geo- and anthropogenic contaminated soils: A case study from the temperate region (Germany) and the arid region (Egypt). Environmental Pollution, 2020, 262, 114312.	7.5	77
9	Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere, 2006, 64, 63-70.	8.2	76
10	Impacts of Biochar on Physical Properties and Erosion Potential of a Mudstone Slopeland Soil. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	71
11	Release dynamics of As, Co, and Mo in a biochar treated soil under pre-definite redox conditions. Science of the Total Environment, 2019, 657, 686-695.	8.0	69
12	In-Situ Immobilization of Cadmium and Lead by Different Amendments in Two Contaminated Soils. Water, Air, and Soil Pollution, 2002, 140, 73-84.	2.4	68
13	Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan. International Journal of Environmental Research and Public Health, 2010, 7, 3595-3614.	2.6	68
14	Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids. Chemosphere, 2006, 63, 762-771.	8.2	67
15	Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environmental Geochemistry and Health, 2017, 39, 391-401.	3.4	63
16	Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine-mine tailings for phytoextraction. Journal of Hazardous Materials, 2007, 148, 366-376.	12.4	59
17	Weathering sequences of clay minerals in soils along a serpentinitic toposequence. Clays and Clay Minerals, 2007, 55, 389-401.	1.3	56
18	Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals. Chemosphere, 2011, 84, 1244-1249.	8.2	52

#	Article	IF	CITATIONS
19	Partitioning of arsenic in soil–crop systems irrigated using groundwater: A case study of rice paddy soils in southwestern Taiwan. Chemosphere, 2012, 86, 606-613.	8.2	51
20	CONCENTRATION AND DISTRIBUTION OF CHROMIUM AND NICKEL FRACTIONS ALONG A SERPENTINITIC TOPOSEQUENCE. Soil Science, 2006, 171, 341-353.	0.9	49
21	Using EDDS and NTA for enhanced phytoextraction of Cd by water spinach. Journal of Environmental Management, 2013, 117, 58-64.	7.8	47
22	The influence of soil age on ecosystem structure and function across biomes. Nature Communications, 2020, 11, 4721.	12.8	47
23	Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environment International, 2019, 131, 104974.	10.0	43
24	Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. Journal of Environmental Management, 2011, 92, 2818-2822.	7.8	41
25	Litter production, decomposition and nutrient return of uplifted coral reef tropical forest. Forest Ecology and Management, 2006, 235, 174-185.	3.2	38
26	Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1748-1756.	1.7	38
27	Saturation, Reduction, and Redox Morphology of Seasonally Flooded Alfisols in Taiwan. Soil Science Society of America Journal, 1996, 60, 941-949.	2.2	37
28	Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient. Geoderma, 2018, 327, 97-106.	5.1	36
29	Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan. Environmental Geochemistry and Health, 2017, 39, 1325-1334.	3.4	33
30	Pedogeochemical characteristics of chromite in a paddy soil derived from serpentinites. Geoderma, 2013, 202-203, 126-133.	5.1	32
31	Characterization of Placic Horizons in Two Subalpine Forest Inceptisols. Soil Science Society of America Journal, 1999, 63, 941-947.	2.2	31
32	Evaluating heavy metal concentration of plants on a serpentine site for phytoremediation applications. Environmental Earth Sciences, 2013, 70, 191-199.	2.7	31
33	Pedogenic approach to resolving the geomorphic evolution of the Pakua river terraces in central Taiwan. Geomorphology, 2007, 83, 14-28.	2.6	30
34	Hydropedological Implications of Ferromanganiferous Nodules in Riceâ€Growing Plinthitic Ultisols under Different Moisture Regimes. Soil Science Society of America Journal, 2010, 74, 880-891.	2.2	30
35	A RIVER TERRACE SOIL CHRONOSEQUENCE OF THE PAKUA TABLELAND IN CENTRAL TAIWAN. Soil Science, 2006, 171, 167-179.	0.9	29
36	Meteoric 10Be dating of highly weathered soils from fluvial terraces in Taiwan. Quaternary International, 2008, 188, 185-196.	1.5	29

#	Article	IF	CITATIONS
37	CLAY MINERALOGY OF SPODOSOLS WITH HIGH CLAY CONTENTS IN THE SUBALPINE FORESTS OF TAIWAN. Clays and Clay Minerals, 2002, 50, 726-735.	1.3	27
38	Nitrogen mineralization potentials in three tropical soils treated with biosolids. Chemosphere, 2005, 59, 447-454.	8.2	26
39	Quantifying Soil Hydromorphology of a Rice-Growing Ultisol Toposequence in Taiwan. Soil Science Society of America Journal, 2001, 65, 270-278.	2.2	25
40	Geochemical Element Differentiation in Serpentine Soils From the Ophiolite Complexes, Eastern Taiwan. Soil Science, 2009, 174, 283-291.	0.9	25
41	Leaching potential of geogenic nickel in serpentine soils from Taiwan and Austria. Journal of Environmental Management, 2017, 186, 151-157.	7.8	25
42	Association between arsenic and different-sized dissolved organic matter in the groundwater of black-foot disease area, Taiwan. Chemosphere, 2016, 159, 214-220.	8.2	24
43	Soil and biomass carbon re-accumulation after landslide disturbances. Geomorphology, 2017, 288, 164-174.	2.6	24
44	Inhibition of ethylenediaminetetraacetic acid ferric sodium salt (EDTA-Fe) and calcium peroxide (CaO2) on arsenic uptake by vegetables in arsenic-rich agricultural soil. Journal of Geochemical Exploration, 2016, 163, 19-27.	3.2	23
45	Influence of soil properties on the bioaccessibility of Cr and Ni in geologic serpentine and anthropogenically contaminated non-serpentine soils in Taiwan. Science of the Total Environment, 2020, 714, 136761.	8.0	22
46	Soil genesis along a chronosequence on marine terraces in eastern Taiwan. Catena, 2007, 71, 394-405.	5.0	21
47	Geochemical characterization of placic horizons in subtropical montane forest soils, northeastern Taiwan. European Journal of Soil Science, 2010, 61, 319-332.	3.9	19
48	Irrigation Practices on Rice Crop Production in Arsenicâ€Rich Paddy Soil. Crop Science, 2016, 56, 422-431.	1.8	19
49	Bioaccumulation and human health risk assessment of chromium and nickel in paddy rice grown in serpentine soils. Environmental Science and Pollution Research, 2021, 28, 17146-17157.	5.3	17
50	Distribution and Accumulation of Arsenic in Rice Plants Grown in Arsenicâ€Rich Agricultural Soil. Agronomy Journal, 2014, 106, 945-951.	1.8	16
51	Soil ingestion rates for children under 3 years old in Taiwan. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 33-40.	3.9	16
52	Response of microbial activities in two contrasting soils to 4-nonylphenol treated with biosolids. Chemosphere, 2006, 64, 1769-1776.	8.2	15
53	Pedogenic correlation of lateritic river terraces in central Taiwan. Geomorphology, 2007, 88, 201-213.	2.6	15
54	Evaluation of Phytoavailability of Heavy Metals to Chinese Cabbage (<i>Brassica chinensis</i> L.) in Rural Soils. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	15

#	Article	IF	CITATIONS
55	TRANSITIONAL SOIL CHARACTERISTICS OF ULTISOLS AND SPODOSOLS IN THE SUBALPINE FOREST OF TAIWAN. Soil Science, 2004, 169, 457-467.	0.9	14
56	RELATIONS BETWEEN MORPHOLOGICAL COLOR INDEX AND SOIL WETNESS CONDITION OF ANTHRAQUIC SOILS IN TAIWAN. Soil Science, 2004, 169, 871-882.	0.9	14
57	Experiences of Mass Pig Carcass Disposal Related to Groundwater Quality Monitoring in Taiwan. Sustainability, 2017, 9, 46.	3.2	14
58	Evaluating vanadium bioavailability to cabbage in rural soils using geochemical and micro-spectroscopic techniques. Environmental Pollution, 2020, 258, 113699.	7. 5	14
59	Influence of Aged Biochar Modified by Cd2+ on Soil Properties and Microbial Community. Sustainability, 2020, 12, 4868.	3.2	14
60	Pedogeochemical distribution of gallium, indium and thallium, their potential availability and associated risk in highly-weathered soil profiles of Taiwan. Environmental Research, 2021, 197, 110994.	7. 5	14
61	Subtropical Soil Chronosequence on Holocene Marine Terraces in Eastern Taiwan. Soil Science Society of America Journal, 2010, 74, 1271-1283.	2.2	13
62	Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury. Journal of the Air and Waste Management Association, 2014, 64, 1013-1020.	1.9	13
63	Determination of hand soil loading, soil transfer, and particle size variations after hand-pressing and hand-mouthing activities. Science of the Total Environment, 2018, 627, 844-851.	8.0	13
64	Comparison of bacterial communities and their functional profiling using 16S rRNA gene sequencing between the inherent serpentine-associated sites, hyper-accumulator, downgradient agricultural farmlands, and distal non-serpentine soils. Journal of Hazardous Materials, 2022, 431, 128557.	12.4	12
65	Clay-Mineral Transformations and Heavy-Metal Release in Paddy Soils Formed on Serpentinites in Eastern Taiwan. Clays and Clay Minerals, 2015, 63, 119-131.	1.3	11
66	Soilscape of west-central Taiwan: Its pedogenesis and geomorphic implications. Geomorphology, 2016, 255, 81-94.	2.6	11
67	Efficacy of cheap amendments for stabilizing trace elements in contaminated paddy fields. Chemosphere, 2018, 198, 130-138.	8.2	11
68	Pedogenic properties of surface deposits used as evidence for the type of landform formation of the Tadu tableland in central Taiwan. Geomorphology, 2010, 114, 590-600.	2.6	10
69	Rehabilitation of a Sandy Soil With Aluminum-Water Treatment Residual. Soil Science, 2011, 176, 691-698.	0.9	9
70	Soil-to-skin adherence during different activities for children in Taiwan. Environmental Research, 2018, 167, 240-247.	7.5	9
71	Study of transportation and distribution of PCBs using an ecologically simulated growth chamber. Chemosphere, 2006, 64, 565-573.	8.2	8
72	Partition of geogenic nickel in paddy soils derived from serpentinites. Paddy and Water Environment, 2016, 14, 417-426.	1.8	8

#	Article	IF	CITATIONS
7 3	Extractable Concentrations of Cobalt from Serpentine Soils with Several Singleâ€Extraction Procedures. Communications in Soil Science and Plant Analysis, 2009, 40, 2200-2224.	1.4	7
74	Chromium Speciation Associated with Iron and Manganese Oxides in Serpentine Mine Tailings. Environmental Engineering Science, 2013, 30, 241-247.	1.6	7
7 5	Sorption of Paraquat on Clay Components in a Taiwan's Oxisol. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38, 441-449.	1.5	6
76	Geomorphological and paleoclimatic implications of soil development from siliceous materials on the coral-reef terraces of Liuchiu Island in southern Taiwan. Soil Science and Plant Nutrition, 2011, 57, 114-127.	1.9	6
77	Environmental and Health Risks of Heavy Metals in Farmland Soils of Drinking Water Protection Areas and a Contaminated Paddy Field in Taiwan. Sustainability, 2019, 11, 5166.	3.2	6
78	Development of Porous Template Carbons from Montmorillonite Clays and Evaluation of Their Toluene Adsorption Behaviors. Aerosol and Air Quality Research, 2013, 13, 1779-1789.	2.1	6
79	Rare earth elements associated with pedogenic iron oxides in humid and tropical soils from different parent materials. Geoderma, 2022, 423, 115966.	5.1	6
80	Sorption and Biodegradation of Phthalic Acid Esters in Freshwater Sediments. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 103-115.	1.7	5
81	Morphology and pedogenesis of placic horizons in podzolic Ultisols with high clay content in humid subtropical forests. Geoderma, 2019, 353, 243-251.	5.1	5
82	Evolution of As speciation with depth in a soil profile with a geothermal As origin. Chemosphere, 2020, 241, 124956.	8.2	4
83	Aeolian additions of podzolic soils on the high-altitude mountains in central Taiwan-sediment origin and pedological implications. Geoderma, 2021, 383, 114726.	5.1	4
84	BASELINE CONCENTRATIONS OF TEN METALS IN THE FRESHWATER SEDIMENTS OF A WATERSHED IN TAIWAN. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2002, 37, 1633-1647.	1.7	3
85	Portable X-Ray Fluorescence (pXRF) for Determining Cr and Ni Contents of Serpentine Soils in the Field. Progress in Soil Science, 2016, , 37-50.	0.8	3
86	Silicon availability in relation to soil properties in Inceptisols on uncultivated lands and paddy fields in Taiwan. Geoderma Regional, 2021, 26, e00406.	2.1	3
87	Fate of Heavy Metals and Evaluation of Eutrophication in a Wetland-Reservoir System. Water Environment Research, 2014, 86, 331-339.	2.7	2
88	Pedogenesis of red soils overlaid coral reef terraces in the Southern Taiwan. Quaternary International, 2017, 441, 62-76.	1.5	2
89	Correcting the classification of plinthic Ultisols on aged alluvial terraces in Taiwan. Soil Science and Plant Nutrition, 2020, 66, 458-468.	1.9	2
90	Erosion Potential Estimation by Network Measurement of Soil Properties in Coastal Areas after Clearcutting. International Journal of Distributed Sensor Networks, 2015, 11, 281321.	2.2	2

#	Article	IF	CITATIONS
91	Soil connectivity makes university social responsibility practice in Taiwan. Soil Security, 2022, 6, 100046.	2.3	2
92	Kinetics of Chromium Reduction Associated with Varying Characteristics of Agricultural Soils. Water (Switzerland), 2022, 14, 570.	2.7	2
93	Identification of the water source and groundwater recharge in a paddy field using stable hydrogen and oxygen isotopes. Water Science and Technology: Water Supply, 2022, 22, 6443-6457.	2.1	2
94	Soil Profile Imaging for Estimating the Depth Distributions of Clay, Iron, and Hydrological Conditions of Soils Under Rice in Northern Taiwan. Progress in Soil Science, 2016, , 145-163.	0.8	1
95	Effects of Pine Bark Compost on the Distribution of Cd and Pb in Organic Fractions over Time in Contaminated Soils. Journal of Hazardous, Toxic, and Radioactive Waste, 2013, 17, 38-44.	2.0	0
96	Ecological and Health Risk of Soils, Sediments, and Water Contamination. Water (Switzerland), 2020, 12, 2867.	2.7	0
97	Asian Anthroscapes: China and Taiwan. , 2010, , 205-241.		0
98	Spodosols. World Soils Book Series, 2015, , 83-94.	0.2	0
99	Soil Survey, Information System, and Soil Classification. World Soils Book Series, 2015, , 11-23.	0.2	0
100	Alfisols. World Soils Book Series, 2015, , 25-34.	0.2	0
101	Evaluation of Land Use Adaptation by Sequential Extraction of Soil Trace Elements at an Abandoned Gold and Copper Refinery Site in Northern Taiwan. Sustainability, 2022, 14, 6423.	3.2	O