Stefan Geisen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7532473/publications.pdf

Version: 2024-02-01

106 papers	8,154 citations	47006 47 h-index	83 g-index
113	113 does citations	113	6488
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	pr2â€primers: An 18S rRNA primer database for protists. Molecular Ecology Resources, 2022, 22, 168-179.	4.8	39
2	Contrasting effects of soil microbial interactions on growth–defence relationships between early― and midâ€successional plant communities. New Phytologist, 2022, 233, 1345-1357.	7.3	22
3	Towards revealing the global diversity and community assembly of soil eukaryotes. Ecology Letters, 2022, 25, 65-76.	6.4	47
4	Arbuscular mycorrhizal inoculation and plant response strongly shape bacterial and eukaryotic soil community trajectories. Soil Biology and Biochemistry, 2022, 165, 108524.	8.8	6
5	Feeding habits and multifunctional classification of soilâ€associated consumers from protists to vertebrates. Biological Reviews, 2022, 97, 1057-1117.	10.4	113
6	Contribution of soil algae to the global carbon cycle. New Phytologist, 2022, 234, 64-76.	7.3	39
7	Nematode-based indices in soil ecology: Application, utility, and future directions. Soil Biology and Biochemistry, 2022, 169, 108640.	8.8	56
8	Pedogenesis shapes predator-prey relationships within soil microbiomes. Science of the Total Environment, 2022, 828, 154405.	8.0	4
9	Five Groups in the Genus Allovahlkampfia and the Description of the New Species Vahlkampfia bulbosis n.sp Protist, 2022, 173, 125870.	1.5	4
10	Discrepancies between prokaryotes and eukaryotes need to be considered in soil <scp>DNA</scp> â€based studies. Environmental Microbiology, 2022, 24, 3829-3839.	3.8	8
11	Nematode Predation and Competitive Interactions Affect Microbe-Mediated Phosphorus Dynamics. MBio, 2022, 13, e0329321.	4.1	14
12	Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. ISME Journal, 2022, 16, 1932-1943.	9.8	57
13	Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities. FEMS Microbiology Ecology, 2022, 98, .	2.7	14
14	Management effects on soil nematode abundance differ among functional groups and landâ€use types at a global scale. Journal of Animal Ecology, 2022, 91, 1770-1780.	2.8	11
15	Soil microbial diversity and community composition during conversion from conventional to organic agriculture. Molecular Ecology, 2022, 31, 4017-4030.	3.9	11
16	Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. ISME Journal, 2021, 15, 618-621.	9.8	61
17	Resilience of rhizosphere microbial predators and their prey communities after an extreme heat event. Functional Ecology, 2021, 35, 216-225.	3.6	13
18	Metagenomic assessment of the global diversity and distribution of bacteria and fungi. Environmental Microbiology, 2021, 23, 316-326.	3.8	42

#	Article	IF	CITATIONS
19	Nematodes as Drivers of Plant Performance in Natural Systems. Trends in Plant Science, 2021, 26, 237-247.	8.8	90
20	Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environment International, 2021, 146, 106262.	10.0	110
21	Fungal root endophytes influence plants in a speciesâ€specific manner that depends on plant's growth stage. Journal of Ecology, 2021, 109, 1618-1632.	4.0	11
22	Herbicide Selection Promotes Antibiotic Resistance in Soil Microbiomes. Molecular Biology and Evolution, 2021, 38, 2337-2350.	8.9	68
23	Protists as main indicators and determinants of plant performance. Microbiome, 2021, 9, 64.	11.1	71
24	Agricultural habitats are dominated by rapidly evolving nematodes revealed through phylogenetic comparative methods. Soil Biology and Biochemistry, 2021, 155, 108183.	8.8	16
25	The relative importance of soil moisture in predicting bacterial wilt disease occurrence. Soil Ecology Letters, 2021, 3, 356-366.	4.5	19
26	Distinct Resistomes and Microbial Communities of Soils, Wastewater Treatment Plants and Households Suggest Development of Antibiotic Resistances Due to Distinct Environmental Conditions in Each Environment. Antibiotics, 2021, 10, 514.	3.7	8
27	A global overview of the trophic structure within microbiomes across ecosystems. Environment International, 2021, 151, 106438.	10.0	48
28	Ecosystem coupling: A unifying framework to understand the functioning and recovery of ecosystems. One Earth, 2021, 4, 951-966.	6.8	26
29	Inventory of the benthic eukaryotic diversity in the oldest European lake. Ecology and Evolution, 2021, 11, 11207-11215.	1.9	2
30	Faster recovery of soil biodiversity in native species mixture than in <i>Eucalyptus</i> monoculture after 60Âyears afforestation in tropical degraded coastal terraces. Global Change Biology, 2021, 27, 5329-5340.	9.5	17
31	The Future of (Soil) Microbiome Studies: Current Limitations, Integration, and Perspectives. MSystems, 2021, 6, e0061321.	3.8	10
32	The aerobiome uncovered: Multi-marker metabarcoding reveals potential drivers of turn-over in the full microbial community in the air. Environment International, 2021, 154, 106551.	10.0	27
33	Microbial–Faunal Interactions in the Rhizosphere. Rhizosphere Biology, 2021, , 237-253.	0.6	4
34	Agriculture erases climate constraints on soil nematode communities across large spatial scales. Global Change Biology, 2020, 26, 919-930.	9.5	49
35	Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences. Microbiome, 2020, 8, 142.	11.1	42
36	Plant population and soil origin effects on rhizosphere nematode community composition of a range-expanding plant species and a native congener. Oecologia, 2020, 194, 237-250.	2.0	2

#	Article	IF	Citations
37	Temperature-Induced Annual Variation in Microbial Community Changes and Resulting Metabolome Shifts in a Controlled Fermentation System. MSystems, 2020, 5, .	3.8	47
38	Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome, 2020, 8, 137.	11.1	181
39	Shotgun metagenomics reveal a diverse assemblage of protists in a model Antarctic soil ecosystem. Environmental Microbiology, 2020, 22, 4620-4632.	3.8	13
40	Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nature Communications, 2020, 11, 6406.	12.8	113
41	The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant and Soil, 2020, 452, 105-117.	3.7	44
42	A global database of soil nematode abundance and functional group composition. Scientific Data, 2020, 7, 103.	5.3	46
43	Rhizosphere protists are key determinants of plant health. Microbiome, 2020, 8, 27.	11.1	156
44	Chemical structure predicts the effect of plantâ€derived lowâ€molecular weight compounds on soil microbiome structure and pathogen suppression. Functional Ecology, 2020, 34, 2158-2169.	3.6	34
45	The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances, 2020, 6, eaax8787.	10.3	263
46	Patterns of local, intercontinental and interseasonal variation of soil bacterial and eukaryotic microbial communities. FEMS Microbiology Ecology, 2020, 96, .	2.7	19
47	Communityâ€level interactions between plants and soil biota during range expansion. Journal of Ecology, 2020, 108, 1860-1873.	4.0	14
48	Fertilization changes soil microbiome functioning, especially phagotrophic protists. Soil Biology and Biochemistry, 2020, 148, 107863.	8.8	78
49	Rhizosphere immunity: targeting the underground for sustainable plant health management. Frontiers of Agricultural Science and Engineering, 2020, 7, 317.	1.4	28
50	A methodological framework to embrace soil biodiversity. Soil Biology and Biochemistry, 2019, 136, 107536.	8.8	88
51	Soil nematode abundance and functional group composition at a global scale. Nature, 2019, 572, 194-198.	27.8	635
52	Microbial invasions in terrestrial ecosystems. Nature Reviews Microbiology, 2019, 17, 621-631.	28.6	74
53	Challenges and Opportunities for Soil Biodiversity in the Anthropocene. Current Biology, 2019, 29, R1036-R1044.	3.9	136
54	Deciphering Underlying Drivers of Disease Suppressiveness Against Pathogenic Fusarium oxysporum. Frontiers in Microbiology, 2019, 10, 2535.	3.5	38

#	Article	IF	CITATIONS
55	Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting. Environment International, 2019, 133, 105203.	10.0	82
56	Soil functional responses to drought under rangeâ€expanding and native plant communities. Functional Ecology, 2019, 33, 2402-2416.	3.6	13
57	Reduced tillage, but not organic matter input, increased nematode diversity and food web stability in European longâ€term field experiments. Molecular Ecology, 2019, 28, 4987-5005.	3.9	39
58	Trophic Regulations of the Soil Microbiome. Trends in Microbiology, 2019, 27, 771-780.	7.7	232
59	Microbial amendments alter protist communities within the soil microbiome. Soil Biology and Biochemistry, 2019, 135, 379-382.	8.8	32
60	Latitudinal variation in soil nematode communities under climate warmingâ€related rangeâ€expanding and native plants. Global Change Biology, 2019, 25, 2714-2726.	9.5	45
61	Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome, 2019, 7, 33.	11.1	278
62	Range-expansion effects on the belowground plant microbiome. Nature Ecology and Evolution, 2019, 3, 604-611.	7.8	67
63	Root traits and belowground herbivores relate to plant–soil feedback variation among congeners. Nature Communications, 2019, 10, 1564.	12.8	71
64	Competition and predation as possible causes of bacterial rarity. Environmental Microbiology, 2019, 21, 1356-1368.	3.8	23
65	Protists: Puppet Masters of the Rhizosphere Microbiome. Trends in Plant Science, 2019, 24, 165-176.	8.8	215
66	Horizontal gene transfer and shifts in linked bacterial community composition are associated with maintenance of antibiotic resistance genes during food waste composting. Science of the Total Environment, 2019, 660, 841-850.	8.0	99
67	A low proportion of rare bacterial taxa responds to abiotic changes compared with dominant taxa. Environmental Microbiology, 2019, 21, 750-758.	3.8	57
68	Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion. Methods in Ecology and Evolution, 2018, 9, 1366-1378.	5.2	78
69	Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews, 2018, 42, 293-323.	8.6	368
70	The need for standardisation: Exemplified by a description of the diversity, community structure and ecological indices of soil nematodes. Ecological Indicators, 2018, 87, 43-46.	6.3	34
71	Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Applied Soil Ecology, 2018, 123, 328-333.	4.3	62
72	Soil protist communities form a dynamic hub in the soil microbiome. ISME Journal, 2018, 12, 634-638.	9.8	184

#	Article	lF	Citations
73	Humusica 2, article 17: techno humus systems and global change â^ three crucial questions. Applied Soil Ecology, 2018, 122, 237-253.	4.3	7
74	Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge. Environmental Science & Environmental Science & 2018, 52, 266-276.	10.0	321
75	Protist species richness and soil microbiome complexity increase towards climax vegetation in the Brazilian Cerrado. Communications Biology, 2018, 1, 135.	4.4	58
76	Network Analyses Can Advance Above-Belowground Ecology. Trends in Plant Science, 2018, 23, 759-768.	8.8	60
77	Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 2017, 8, 14349.	12.8	555
78	Soil protistology rebooted: 30 fundamental questions to start with. Soil Biology and Biochemistry, 2017, 111, 94-103.	8.8	130
79	The preyâ \in ^M s scent â \in " Volatile organic compound mediated interactions between soil bacteria and their protist predators. ISME Journal, 2017, 11, 817-820.	9.8	115
80	<i>UniEuk</i> : Time to Speak a Common Language in Protistology!. Journal of Eukaryotic Microbiology, 2017, 64, 407-411.	1.7	74
81	Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida). Protist, 2017, 168, 220-252.	1.5	11
82	Seed and Root Endophytic Fungi in a Range Expanding and a Related Plant Species. Frontiers in Microbiology, 2017, 8, 1645.	3.5	77
83	Thorough high $\hat{\epsilon}$ throughput sequencing analyses unravels huge diversities of soil parasitic protists. Environmental Microbiology, 2016, 18, 1669-1672.	3.8	36
84	Coprophilic amoebae and flagellates, including Guttulinopsis, Rosculus and Helkesimastix, characterise a divergent and diverse rhizarian radiation and contribute to a large diversity of faecalâ€associated protists. Environmental Microbiology, 2016, 18, 1604-1619.	3.8	42
85	Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida,) Tj ETQq1 1 0.784.	314 rgBT / 4.6	Oyerlock 10
86	Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators, 2016, 69, 213-223.	6.3	80
87	Interspecific differences in nematode control between range-expanding plant species and their congeneric natives. Soil Biology and Biochemistry, 2016, 100, 233-241.	8.8	10
88	The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry, 2016, 102, 22-25.	8.8	129
89	Organic matter composition and the protist and nematode communities around anecic earthworm burrows. Biology and Fertility of Soils, 2016, 52, 91-100.	4.3	35
90	The soil food web revisited: Diverse and widespread mycophagous soil protists. Soil Biology and Biochemistry, 2016, 94, 10-18.	8.8	175

#	Article	IF	Citations
91	Molecular Identification of Soil Eukaryotes and Focused Approaches Targeting Protist and Faunal Groups Using High-Throughput Metabarcoding. Methods in Molecular Biology, 2016, 1399, 125-140.	0.9	11
92	Stimulation of bacteria and protists in rhizosphere of glyphosate-treated barley. Applied Soil Ecology, 2016, 98, 47-55.	4.3	31
93	A method of establishing a transect for biodiversity and ecosystem function monitoring across Europe. Applied Soil Ecology, 2016, 97, 3-11.	4.3	29
94	Not all are freeâ€iving: highâ€throughput <scp>DNA</scp> metabarcoding reveals a diverse community of protists parasitizing soil metazoa. Molecular Ecology, 2015, 24, 4556-4569.	3.9	116
95	Pack hunting by a common soil amoeba on nematodes. Environmental Microbiology, 2015, 17, 4538-4546.	3.8	93
96	Heterogeneity in the genus Allovahlkampfia and the description of the new genus Parafumarolamoeba (Vahlkampfiidae; Heterolobosea). European Journal of Protistology, 2015, 51, 335-349.	1.5	14
97	Erratum to "Soil water availability strongly alters the community composition of soil protists― [Pedobiologia – J. Soil Ecol. 57 (4–6) (2014) 205–213]. Pedobiologia, 2015, 58, 55.	1.2	3
98	Expansion of the â€~Reticulosphere': Diversity of Novel Branching and Network-forming Amoebae Helps to Define Variosea (Amoebozoa). Protist, 2015, 166, 271-295.	1.5	57
99	Metatranscriptomic census of active protists in soils. ISME Journal, 2015, 9, 2178-2190.	9.8	274
100	Soil water availability strongly alters the community composition of soil protists. Pedobiologia, 2014, 57, 205-213.	1.2	125
101	Two new species of the genus Stenamoeba (Discosea, Longamoebia): Cytoplasmic MTOC is present in one more amoebae lineage. European Journal of Protistology, 2014, 50, 153-165.	1.5	25
102	Acanthamoeba everywhere: high diversity of Acanthamoeba in soils. Parasitology Research, 2014, 113, 3151-3158.	1.6	75
103	Discrepancy between Species Borders at Morphological and Molecular Levels in the Genus Cochliopodium (Amoebozoa, Himatismenida), with the Description of Cochliopodium plurinucleolum n. sp Protist, 2014, 165, 364-383.	1.5	30
104	Distributional (In)Congruence of Biodiversity–Ecosystem Functioning. Advances in Ecological Research, 2012, 46, 1-88.	2.7	52
105	Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth. Metabarcoding and Metagenomics, 0, 3, .	0.0	47
106	Super-Small Predators in Soils: Who Are They and What Do They Do?. Frontiers for Young Minds, 0, 9, .	0.8	0