
Trevor B Hoey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7532418/publications.pdf Version: 2024-02-01

TREVOR R HOEV

#	Article	IF	CITATIONS
1	Large-scale flood risk assessment under different development strategies: the Luanhe River Basin in China. Sustainability Science, 2022, 17, 1365-1384.	4.9	10
2	Development of an SDG interlinkages analysis model at the river basin scale: a case study in the Luanhe River Basin, China. Sustainability Science, 2022, 17, 1405-1433.	4.9	7
3	Slope Break and Avulsion Locations Scale Consistently in Global Deltas. Geophysical Research Letters, 2022, 49, .	4.0	10
4	River Styles and stream power analysis reveal the diversity of fluvial morphology in a Philippine tropical catchment. Geoscience Letters, 2022, 9, .	3.3	2
5	Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. Wiley Interdisciplinary Reviews: Water, 2021, 8, e21496.	6.5	68
6	National-scale assessment of decadal river migration at critical bridge infrastructure in the Philippines. Science of the Total Environment, 2021, 768, 144460.	8.0	22
7	A sedimentological record of fluvial-aeolian interactions and climate variability in the hyperarid northern Namib Desert, Namibia. South African Journal of Geology, 2021, 124, 575-610.	1.2	4
8	A decision support tool for assessing risks to above-ground river pipeline crossings. Water Management, 2020, 173, 87-100.	1.2	4
9	Ground Control Point Distribution for Accurate Kilometre-Scale Topographic Mapping Using an RTK-GNSS Unmanned Aerial Vehicle and SfM Photogrammetry. Drones, 2020, 4, 55.	4.9	58
10	Inertial drag and lift forces for coarse grains on rough alluvial beds measured using in-grain accelerometers. Earth Surface Dynamics, 2020, 8, 1067-1099.	2.4	14
11	Spatiotemporal modeling of hydrological return levels: A quantile regression approach. Environmetrics, 2019, 30, e2522.	1.4	7
12	Decadal-scale morphological adjustment of a lowland tropical river. Geomorphology, 2019, 333, 30-42.	2.6	19
13	Calculating the Explicit Probability of Entrainment Based on Inertial Acceleration Measurements. Journal of Hydraulic Engineering, 2017, 143, 04016097.	1.5	17
14	Landslide Susceptibility Mapping Using GIS-based Vector Grid File (VGF) Validating with InSAR Techniques: Three Gorges, Yangtze River (China). AIMS Geosciences, 2017, 3, 116-141.	1.0	4
15	Anatomy of Subsidence in Tianjin from Time Series InSAR. Remote Sensing, 2016, 8, 266.	4.0	33
16	Formation and erosion of sediment cover in an experimental bedrockâ€alluvial channel . Earth Surface Processes and Landforms, 2016, 41, 1409-1420.	2.5	18
17	A Froudeâ€scaled model of a bedrockâ€alluvial channel reach: 1. Hydraulics. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1578-1596.	2.8	18
18	A Froudeâ€scaled model of a bedrockâ€alluvial channel reach: 2. Sediment cover. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1597-1618.	2.8	20

TREVOR B HOEY

#	Article	IF	CITATIONS
19	Hydraulics are a firstâ€order control on CO ₂ efflux from fluvial systems. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1912-1922.	3.0	30
20	Land Subsidence over Oilfields in the Yellow River Delta. Remote Sensing, 2015, 7, 1540-1564.	4.0	29
21	Spatiotemporal characteristics of the Huangtupo landslide in the Three Gorges region (China) constrained by radar interferometry. Geophysical Journal International, 2014, 197, 213-232.	2.4	54
22	Patterns and mechanisms of coseismic and postseismic slips of the 2011 M W 7.1 Van (Turkey) earthquake revealed by multi-platform synthetic aperture radar interferometry. Tectonophysics, 2014, 632, 188-198.	2.2	32
23	Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sensing of Environment, 2014, 147, 133-144.	11.0	134
24	Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. International Journal of Applied Earth Observation and Geoinformation, 2013, 21, 253-264.	2.8	105
25	The 2011 MW 6.8 Burma earthquake: fault constraints provided by multiple SAR techniques. Geophysical Journal International, 2013, 195, 650-660.	2.4	71
26	Sensor Enclosures: Example Application and Implications for Data Coherence. Journal of Sensor and Actuator Networks, 2013, 2, 761-779.	3.9	10
27	Application of an Instrumented Tracer in an Abrasion Mill for Rock Abrasion Studies. Strojniski Vestnik/Journal of Mechanical Engineering, 2012, 58, 263-270.	1.1	8
28	Reconstructing Greenland ice sheet runoff using coralline algae. Geology, 2012, 40, 1095-1098.	4.4	39
29	Upscaling from grainâ€scale processes to alluviation in bedrock channels using a cellular automaton model. Journal of Geophysical Research, 2012, 117, .	3.3	29
30	The spatial distribution of coarse surface grains and the stability of gravel river beds. Sedimentology, 2012, 59, 1014-1029.	3.1	42
31	Bed load transport in bedrock rivers: The role of sediment cover in grain entrainment, translation, and deposition. Journal of Geophysical Research, 2011, 116, .	3.3	86
32	Implications of climate change in the twentyâ€first century for simulated magnitude and frequency of bedâ€material transport in tributaries of the Saint‣awrence River. Hydrological Processes, 2011, 25, 1558-1573.	2.6	19
33	Cosmogenic ²¹ Ne analysis of individual detrital grains: Opportunities and limitations. Earth Surface Processes and Landforms, 2010, 35, 16-27.	2.5	19
34	Numerical modelling of climate change impacts on Saint‣awrence River tributaries. Earth Surface Processes and Landforms, 2010, 35, 1184-1198.	2.5	21
35	Scale Dependence of Lithological Control on Topography: Bedrock Channel Geometry and Catchment Morphometry in Western Scotland. Journal of Geology, 2010, 118, 223-246.	1.4	54
36	A preliminary estimate of organic carbon transport by the Ayeyarwady (Irrawaddy) and Thanlwin (Salween) Rivers of Myanmar. Quaternary International, 2008, 186, 113-122.	1.5	74

TREVOR B HOEY

#	Article	IF	CITATIONS
37	A modified morphodynamic model for investigating the response of rivers to short-term climate change. Geomorphology, 2008, 101, 674-682.	2.6	38
38	Single-grain cosmogenic 21Ne concentrations in fluvial sediments reveal spatially variable erosion rates. Geology, 2008, 36, 159.	4.4	72
39	The Irrawaddy River Sediment Flux to the Indian Ocean: The Original Nineteenthâ€Century Data Revisited. Journal of Geology, 2007, 115, 629-640.	1.4	116
40	Tributary control of physical heterogeneity and biological diversity at river confluences. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 2553-2566.	1.4	110
41	River system discontinuities due to lateral inputs: generic styles and controls. Earth Surface Processes and Landforms, 2006, 31, 1149-1166.	2.5	87
42	Surface process models and the links between tectonics and topography. Progress in Physical Geography, 2006, 30, 307-333.	3.2	50
43	Chapter 12 The geomorphology and management of a dynamics, unstable gravel-bed river: the Feshie-Spey confluence, Scotland. Developments in Earth Surface Processes, 2005, , 213-224.	2.8	3
44	Knickpoint recession rate and catchment area: the case of uplifted rivers in Eastern Scotland. Earth Surface Processes and Landforms, 2005, 30, 767-778.	2.5	295
45	Basal sediment evacuation by subglacial meltwater: suspended sediment transport from Haut Glacier d'Arolla, Switzerland. Earth Surface Processes and Landforms, 2005, 30, 867-883.	2.5	58
46	Seasonal evolution of runoff from Haut Glacier d'Arolla, Switzerland and implications for glacial geomorphic processes. Journal of Hydrology, 2005, 309, 133-148.	5.4	45
47	The causes of bedload pulses in a gravel channel: the implications of bedload grain-size distributions. Earth Surface Processes and Landforms, 2003, 28, 1411-1428.	2.5	68
48	Mobility of river tracer pebbles over different timescales. Water Resources Research, 2002, 38, 3-1-3-8.	4.2	112
49	Geomorphic implications of subglacial drainage configuration: rates of basal sediment evacuation controlled by seasonal drainage system evolution. Sedimentary Geology, 2002, 149, 5-19.	2.1	51
50	Critical shear stress for incipient motion of sand/gravel streambeds. Water Resources Research, 2001, 37, 2273-2283.	4.2	97
51	Selective bedload transport during the degradation of a well sorted graded sediment bed. Journal of Hydraulic Research/De Recherches Hydrauliques, 2001, 39, 269-277.	1.7	36
52	Identifying the controls over downstream fining of river gravels. Journal of Sedimentary Research, 1999, 69, 40-50.	1.6	84
53	Riverâ€Management Issues in Scottish Rivers. Water and Environment Journal, 1998, 12, 60-65.	2.2	3
54	Controls of strength and rate of downstream fining above a river base level. Water Resources Research, 1997, 33, 2601-2608.	4.2	63

TREVOR B HOEY

#	Article	IF	CITATIONS
55	Quantitative determination of the activity of within-reach sediment storage in a small gravel-bed river using transit time and response time. Geomorphology, 1997, 20, 113-134.	2.6	31
56	Field evidence for rapid downstream fining of river gravels through selective transport. Geology, 1996, 24, 179.	4.4	181
57	Unequal Mobility of Gravel and Sand in Weakly Bimodal River Sediments. Water Resources Research, 1995, 31, 2087-2096.	4.2	135
58	Numerical simulation of downstream fining by selective transport in gravel bed rivers: Model development and illustration. Water Resources Research, 1994, 30, 2251-2260.	4.2	261
59	Temporal variations in bedload transport rates and sediment storage in gravel-bed rivers. Progress in Physical Geography, 1992, 16, 319-338.	3.2	118
60	Channel morphology and bedload pulses in braided rivers: a laboratory study. Earth Surface Processes and Landforms, 1991, 16, 447-462.	2.5	126
61	Testing Numerical Models in Geomorphology: How can we Ensure Critical Use of Model Predictions?. Geophysical Monograph Series, 0, , 241-256.	0.1	9