List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/75324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gold Nanoparticles Located at the Interface of Anatase/Rutile TiO ₂ Particles as Active Plasmonic Photocatalysts for Aerobic Oxidation. Journal of the American Chemical Society, 2012, 134, 6309-6315.	13.7	610
2	Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chemical Communications, 2005, , 2125-2127.	4.1	492
3	Sunlightâ€Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metalâ€Free Photocatalysts. Angewandte Chemie - International Edition, 2014, 53, 13454-13459.	13.8	467
4	Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nature Materials, 2019, 18, 985-993.	27.5	429
5	Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013, 15, 1794.	2.6	418
6	Carbon Nitride–Aromatic Diimide–Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency. Journal of the American Chemical Society, 2016, 138, 10019-10025.	13.7	406
7	Photocatalytic H ₂ O ₂ Production from Ethanol/O ₂ System Using TiO ₂ Loaded with Au–Ag Bimetallic Alloy Nanoparticles. ACS Catalysis, 2012, 2, 599-603.	11.2	361
8	Effects of Surface Defects on Photocatalytic H ₂ O ₂ Production by Mesoporous Graphitic Carbon Nitride under Visible Light Irradiation. ACS Catalysis, 2015, 5, 3058-3066.	11.2	289
9	Graphitic Carbon Nitride Doped with Biphenyl Diimide: Efficient Photocatalyst for Hydrogen Peroxide Production from Water and Molecular Oxygen by Sunlight. ACS Catalysis, 2016, 6, 7021-7029.	11.2	282
10	Adsorption and Diffusion Phenomena in Crystal Size Engineered ZIF-8 MOF. Journal of Physical Chemistry C, 2015, 119, 28430-28439.	3.1	204
11	Oneâ€Pot Synthesis of Benzimidazoles by Simultaneous Photocatalytic and Catalytic Reactions on Pt@TiO ₂ Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 1656-1660.	13.8	191
12	Supported Au–Cu Bimetallic Alloy Nanoparticles: An Aerobic Oxidation Catalyst with Regenerable Activity by Visibleâ€Light Irradiation. Angewandte Chemie - International Edition, 2013, 52, 5295-5299.	13.8	176
13	Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light. Chemical Communications, 2014, 50, 15255-15258.	4.1	168
14	Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework. Chemical Communications, 2013, 49, 7884.	4.1	159
15	Size-controlled Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Crystals in an Aqueous System at Room Temperature. Chemistry Letters, 2012, 41, 1337-1339.	1.3	140
16	Photocatalytic Dinitrogen Fixation with Water on Bismuth Oxychloride in Chloride Solutions for Solar-to-Chemical Energy Conversion. Journal of the American Chemical Society, 2020, 142, 7574-7583.	13.7	140
17	Hot-Electron-Induced Highly Efficient O ₂ Activation by Pt Nanoparticles Supported on Ta ₂ O ₅ Driven by Visible Light. Journal of the American Chemical Society, 2015, 137, 9324-9332.	13.7	139
18	Highly Efficient and Selective Hydrogenation of Nitroaromatics on Photoactivated Rutile Titanium Dioxide. ACS Catalysis, 2012, 2, 2475-2481.	11.2	131

#	Article	IF	CITATIONS
19	Fabrication of continuous mesoporous carbon films with face-centered orthorhombic symmetry through a soft templating pathway. Journal of Materials Chemistry, 2007, 17, 3639.	6.7	124
20	Direct and selective conversion of methanol to para-xylene over Zn ion doped ZSM-5/silicalite-1 core-shell zeolite catalyst. Journal of Catalysis, 2016, 342, 63-66.	6.2	116
21	One-pot synthesis of imines from alcohols and amines with TiO2 loading Pt nanoparticles under UV irradiation. Chemical Communications, 2011, 47, 4811.	4.1	113
22	Vapor-Phase Synthesis of Mesoporous Silica Thin Films. Chemistry of Materials, 2003, 15, 1006-1011.	6.7	110
23	KOH activation of ordered mesoporous carbons prepared by a soft-templating method and their enhanced electrochemical properties. Carbon, 2010, 48, 1985-1989.	10.3	106
24	Nitrogen Fixation with Water on Carbon-Nitride-Based Metal-Free Photocatalysts with 0.1% Solar-to-Ammonia Energy Conversion Efficiency. ACS Applied Energy Materials, 2018, 1, 4169-4177.	5.1	103
25	Synthesis of ordered mesoporous carbon films, powders, and fibers by direct triblock-copolymer-templating method using an ethanol/water system. Carbon, 2009, 47, 2688-2698.	10.3	99
26	Selective Photocatalytic Oxidation of Alcohols to Aldehydes in Water by TiO ₂ Partially Coated with WO ₃ . Chemistry - A European Journal, 2011, 17, 9816-9824.	3.3	99
27	Hydrogen Peroxide Production on a Carbon Nitride–Boron Nitrideâ€Reduced Graphene Oxide Hybrid Photocatalyst under Visible Light. ChemCatChem, 2018, 10, 2070-2077.	3.7	97
28	Polythiophene-Doped Resorcinol–Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion. Journal of the American Chemical Society, 2021, 143, 12590-12599.	13.7	96
29	Platinum Nanoparticles Supported on Anatase Titanium Dioxide as Highly Active Catalysts for Aerobic Oxidation under Visible Light Irradiation. ACS Catalysis, 2012, 2, 1984-1992.	11.2	95
30	Theoretical analysis of the pseudo-second order kinetic model of adsorption. Application to the adsorption of Ag(I) to mesoporous silica microspheres functionalized with thiol groups. Chemical Engineering Journal, 2013, 218, 350-357.	12.7	92
31	Mellitic Triimide-Doped Carbon Nitride as Sunlight-Driven Photocatalysts for Hydrogen Peroxide Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 6478-6485.	6.7	92
32	Dry gel conversion synthesis of SAPO-34 nanocrystals. Materials Chemistry and Physics, 2010, 123, 507-509.	4.0	91
33	Titanium Dioxide/Reduced Graphene Oxide Hybrid Photocatalysts for Efficient and Selective Partial Oxidation of Cyclohexane. ACS Catalysis, 2017, 7, 293-300.	11.2	91
34	Preparation and CO2 adsorption properties of aminopropyl-functionalized mesoporous silica microspheres. Journal of Colloid and Interface Science, 2009, 339, 382-389.	9.4	87
35	Lightâ€Triggered Selfâ€Assembly of Cold Nanoparticles Based on Photoisomerization of Spirothiopyran. Angewandte Chemie - International Edition, 2013, 52, 8304-8308	13.8	80
36	Quantum tunneling injection of hot electrons in Au/TiO ₂ plasmonic photocatalysts. Nanoscale, 2017, 9, 8349-8361.	5.6	75

#	Article	IF	CITATIONS
37	Nano-Architectural Silica Thin Films with Two-Dimensionally Connected Cagelike Pores Synthesized from Vapor Phase. Journal of the American Chemical Society, 2004, 126, 4854-4858.	13.7	74
38	Enhancement of Structural Stability of Mesoporous Silica Thin Films Prepared by Spin-Coating. Chemistry of Materials, 2002, 14, 4229-4234.	6.7	72
39	Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range. Journal of Colloid and Interface Science, 2009, 334, 188-194.	9.4	72
40	Hierarchical Pore Development of ZIF-8 MOF by Simple Salt-Assisted Mechanosynthesis. Crystal Growth and Design, 2018, 18, 274-279.	3.0	72
41	Highly efficient photocatalytic dehalogenation of organic halides on TiO2 loaded with bimetallic Pd–Pt alloy nanoparticles. Chemical Communications, 2011, 47, 7863.	4.1	67
42	An Experimental Investigation of the Ion Storage/Transfer Behavior in an Electrical Double-Layer Capacitor by Using Monodisperse Carbon Spheres with Microporous Structure. Journal of Physical Chemistry C, 2012, 116, 26791-26799.	3.1	66
43	Grain size control of ZIF-8 membranes by seeding-free aqueous synthesis and their performances in propylene/propane separation. Journal of Membrane Science, 2017, 544, 306-311.	8.2	57
44	Solar-to-hydrogen peroxide energy conversion on resorcinol–formaldehyde resin photocatalysts prepared by acid-catalysed polycondensation. Communications Chemistry, 2020, 3, .	4.5	55
45	Layer-by-layer aqueous rapid synthesis of ZIF-8 films on a reactive surface. Dalton Transactions, 2013, 42, 11128.	3.3	53
46	A Simple Step toward Enhancing Hydrothermal Stability of ZIF-8. ACS Omega, 2019, 4, 19905-19912.	3.5	52
47	Surface modification of soft-templated ordered mesoporous carbon for electrochemical supercapacitors. Microporous and Mesoporous Materials, 2015, 217, 141-149.	4.4	50
48	Structure of Mesoporous Silica Thin Films Prepared by Contacting PEO106â^'PPO70â^'PEO106 Films with Vaporized TEOS. Chemistry of Materials, 2006, 18, 5461-5466.	6.7	49
49	Photocatalytic Dehalogenation of Aromatic Halides on Ta ₂ O ₅ -Supported Pt–Pd Bimetallic Alloy Nanoparticles Activated by Visible Light. ACS Catalysis, 2017, 7, 5194-5201.	11.2	47
50	Pervaporation characteristics of pore-filling PDMS/PMHS membranes for recovery of ethylacetate from aqueous solution. Journal of Membrane Science, 2010, 348, 383-388.	8.2	46
51	Preparation of ordered mesoporous carbon membranes by a soft-templating method. Carbon, 2011, 49, 3184-3189.	10.3	46
52	One-Pot Synthesis of Imines from Nitroaromatics and Alcohols by Tandem Photocatalytic and Catalytic Reactions on Degussa (Evonik) P25 Titanium Dioxide. ACS Applied Materials & Interfaces, 2015, 7, 3797-3806.	8.0	44
53	Pervaporation dehydration performance of microporous carbon membranes prepared from resorcinol/formaldehyde polymer. Journal of Membrane Science, 2011, 379, 52-59.	8.2	43
54	Mechanochemical synthesis of bimetallic CoZn-ZIFs with sodalite structure. Polyhedron, 2019, 158, 290-295.	2.2	38

#	Article	IF	CITATIONS
55	Aqueous-System-Enabled Spray-Drying Technique for the Synthesis of Hollow Polycrystalline ZIF-8 MOF Particles. ACS Omega, 2017, 2, 6437-6445.	3.5	37
56	Vapor-Phase Synthesis of ZIF-8 MOF Thick Film by Conversion of ZnO Nanorod Array. Langmuir, 2018, 34, 7028-7033.	3.5	37
57	Pervaporation of organic/water mixtures with hydrophobic silica membranes functionalized by phenyl groups. Journal of Membrane Science, 2011, 380, 41-47.	8.2	34
58	Synthesis of Ordered Mesoporous Zirconium Phosphate Films by Spin Coating and Vapor Treatments. Langmuir, 2006, 22, 9469-9472.	3.5	32
59	Solvent/OSDA-free interzeolite transformation of FAU into CHA zeolite with quantitative yield. Microporous and Mesoporous Materials, 2019, 278, 219-224.	4.4	31
60	Preparation and Adsorption Properties of Thiol-Functionalized Mesoporous Silica Microspheres. Industrial & Engineering Chemistry Research, 2009, 48, 938-943.	3.7	30
61	Photocatalytic Dinitrogen Reduction with Water on Boron-Doped Carbon Nitride Loaded with Nickel Phosphide Particles. Langmuir, 2020, 36, 734-741.	3.5	27
62	Preparation and pervaporation properties of silica–zirconia membranes. Desalination, 2011, 266, 46-50.	8.2	25
63	Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether. Journal of Colloid and Interface Science, 2012, 388, 185-190.	9.4	25
64	Improving hydrothermal stability of acid sites in MFI type aluminosilicate zeolite (ZSM-5) by coating MFI type all silica zeolite (silicalite-1) shell layer. Microporous and Mesoporous Materials, 2019, 288, 109523.	4.4	25
65	Crystallization process of zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether as organic template. Journal of Colloid and Interface Science, 2012, 376, 28-33.	9.4	24
66	Correlation between the capacitor performance and pore structure of ordered mesoporous carbons. Advanced Powder Technology, 2013, 24, 737-742.	4.1	24
67	Incorporation of Organic Groups within the Channel Wall of Spin-On Mesostructured Silica Films by a Vapor Infiltration Technique. Langmuir, 2004, 20, 3780-3784.	3.5	23
68	Seeding-free aqueous synthesis of zeolitic imidazolate framework-8 membranes: How to trigger preferential heterogeneous nucleation and membrane growth in aqueous rapid reaction solution. Journal of Membrane Science, 2014, 472, 29-38.	8.2	23
69	Dehydrogenation of propane over high silica *BEA type gallosilicate (Ga-Beta). Catalysis Science and Technology, 2019, 9, 6234-6239.	4.1	23
70	Doping of Nb ⁵⁺ Species at the Au–TiO ₂ Interface for Plasmonic Photocatalysis Enhancement. Langmuir, 2019, 35, 5455-5462.	3.5	21
71	Mass transport and electrolyte accessibility through hexagonally ordered channels of self-assembled mesoporous carbons. Journal of Power Sources, 2013, 228, 24-31.	7.8	20
72	Fabrication of Pt nanoparticles encapsulated in single crystal like silicalite-1 zeolite as a catalyst for shape-selective hydrogenation of C6 olefins. Microporous and Mesoporous Materials, 2018, 271, 156-159.	4.4	20

#	Article	IF	CITATIONS
73	Synthesis of silicalite-1 using an interspace of ordered mesoporous carbonâ^'silica nanocomposites: Introduction of mesoporosity in zeolite crystals. Microporous and Mesoporous Materials, 2008, 113, 418-426.	4.4	19
74	Disordered mesoporous silica low-k thin films prepared by vapor deposition into a triblock copolymer template film. Thin Solid Films, 2008, 516, 4771-4776.	1.8	18
75	Improved thermal stability of mesoporous molecular sieves by vapor infiltration treatment. Microporous and Mesoporous Materials, 2003, 63, 105-112.	4.4	17
76	Development of AEI type germanoaluminophosphate (GeAPO-18) with ultra-weak acid sites and its catalytic properties for the methanol to olefin (MTO) reaction. Catalysis Science and Technology, 2017, 7, 4622-4628.	4.1	17
77	Formation of Ordered Mesostructured Silica by Vapor Infiltration of Tetraethoxysilane into Hexagonally Arranged Surfactant–Catalyst Nanocomposites. Chemistry Letters, 2005, 34, 1148-1149.	1.3	16
78	Self-Assembling Imidazolium-Based Ionic Liquid in Rigid Nanopores Induces Anomalous CO ₂ Adsorption at Low Pressure. Langmuir, 2011, 27, 7991-7995.	3.5	16
79	Water Gas Shift Reaction in a Membrane Reactor Using a High Hydrogen Permselective Silica Membrane. Separation Science and Technology, 2013, 48, 76-83.	2.5	15
80	Photocatalytic hydrogenolysis of epoxides using alcohols as reducing agents on TiO ₂ loaded with Pt nanoparticles. Chemical Communications, 2015, 51, 2294-2297.	4.1	14
81	Solvothermal co-gelation synthesis of N-doped three-dimensional open macro/mesoporous carbon as efficient electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 2017, 75, 9-12.	4.7	14
82	Synthesis of titanium silicalite-1 (TS-1) zeolite with high content of Ti by a dry gel conversion method using amorphous TiO2–SiO2 composite with highly dispersed Ti species. Materials Today Chemistry, 2020, 16, 100209.	3.5	14
83	Solvent-free synthesis of Fe/N doped hierarchal porous carbon as an ideal electrocatalyst for oxygen reduction reaction. Materials Today Energy, 2020, 17, 100444.	4.7	14
84	Vapor infiltration techniques for spin-on mesoporous silica films. Thin Solid Films, 2006, 495, 186-190.	1.8	13
85	Aspects of a novel method for the pore size analysis of thin silica films based on krypton adsorption at liquid argon temperature (87.3K). Studies in Surface Science and Catalysis, 2007, , 551-554.	1.5	13
86	Mesoporous aluminosilicates assembled from dissolved LTA zeolite and triblock copolymer in the presence of tetramethylammonium hydroxide. Journal of Colloid and Interface Science, 2009, 333, 491-496.	9.4	13
87	Mechanochemical synthesis of MOFs. , 2020, , 197-222.		13
88	Anchoring a Co/2-methylimidazole complex on ion-exchange resin and its transformation to Co/N-doped carbon as an electrocatalyst for the ORR. Catalysis Science and Technology, 2019, 9, 578-582.	4.1	12
89	Development of hierarchical and phosphorous-modified HZSM-5 zeolites by sequential alkaline/acid treatments and their catalytic performances for methanol-to-olefins. Materials Research Bulletin, 2020, 130, 110958.	5.2	12
90	Ultrathin Silica Films with a Nanoporous Monolayer. Chemistry Letters, 2004, 33, 1408-1409.	1.3	11

#	Article	IF	CITATIONS
91	Fabrication of Co/P25 coated with thin nitrogen-doped carbon shells (Co/P25/NC) as an efficient electrocatalyst for oxygen reduction reaction (ORR). Electrochimica Acta, 2019, 296, 867-873.	5.2	10
92	Crystalline Rearranged CD-MOF Particles Obtained via Spray-Drying Synthesis Applied to Inhalable Formulations with High Drug Loading. Crystal Growth and Design, 2022, 22, 1143-1154.	3.0	10
93	Solvent/OSDA-free transformation of unseeded aluminosilicate into various zeolites via mechanochemical and vapor treatments. Microporous and Mesoporous Materials, 2019, 273, 273-275.	4.4	9
94	OSDA-free and steam-assisted synthesis of PHI type zeolite showing unique CO2 adsorption behaviour. CrystEngComm, 0, , .	2.6	7
95	Low-index mesoporous silica films modified with trimethylethoxysilane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 318, 84-87.	4.7	6
96	Ordered Mesoporous Aluminosilicates Assembled from Dissolved LTA Precursors. Topics in Catalysis, 2010, 53, 224-230.	2.8	6
97	Vapor-assisted crystallization of <i>in situ</i> glycine-modified UiO-66 with enhanced CO ₂ adsorption. New Journal of Chemistry, 2022, 46, 1779-1784.	2.8	6
98	Mesophase Control of Mesoporous Silica Thin Films by Vapor-phase Preparation. Chemistry Letters, 2006, 35, 928-929.	1.3	5
99	Synthesis of Ordered Cage-like Mesoporous Aluminosilicates from Na-A Zeolite Precursors Dissolved in HCl. Chemistry Letters, 2009, 38, 780-781.	1.3	5
100	Synthesis of ordered mesoporous silicoaluminophosphates by using LTA zeolite precursors dissolved under acidic conditions. Materials Letters, 2013, 92, 259-262.	2.6	5
101	Synthesis of Amorphous TiO ₂ Nanoparticles with a High Surface Area and Their Transformation to Li ₄ Ti ₅ O ₁₂ Nanoparticles. Chemistry Letters, 2016, 45, 1285-1287.	1.3	5
102	Mechanochemically synthesized ZIF â€8 nanoparticles blended into 6FDAâ€TrMPD membranes for C 3 H 6 / C 3 H 8 separation. Journal of Applied Polymer Science, 2021, 138, 50251.	2.6	5
103	Photocatalytic Dinitrogen Fixation with Water on High-Phosphorus-Doped Carbon Nitride with Surface Nitrogen Vacancies. Langmuir, 2022, 38, 7137-7145.	3.5	5
104	Novel Periodic Nanoporous Silicate Glass With High Structural Stability as Low-k Thin Film. Materials Research Society Symposia Proceedings, 2002, 716, 1261.	0.1	4
105	Effects of poly-N-isopropylacrylamide on fluorescence properties of CdS/Cd(OH)2 nanoparticles in water. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 51-56.	3.9	4
106	Synthesis of Ordered Nanoporous Silica Film With High Structural Stability. Materials Research Society Symposia Proceedings, 2002, 716, 521.	0.1	3
107	Preparation of Spherical Magnetic Mesoporous Silica Containing Magnetite Nanoparticles by Phase Transfer. Industrial & Engineering Chemistry Research, 2009, 48, 2577-2582.	3.7	3
108	Solvent- and OSDA-Free Synthesis of ZSM-5 Assisted by Mechanochemical and Vapor Treatments. ChemistrySelect, 2017, 2, 7651-7653.	1.5	3

#	Article	IF	CITATIONS
109	Fabrication of NiSx/C with a tuned S/Ni molar ratio using Ni2+ ions and Amberlyst for hydrogen evolution reaction (HER). International Journal of Hydrogen Energy, 2020, 45, 24567-24572.	7.1	3
110	Rational Design of Single Atomic Co in CoN x Moieties on Graphene Matrix as an Ultraâ€Highly Efficient Active Site for Oxygen Reduction Reaction. ChemNanoMat, 2020, 6, 218-222.	2.8	3
111	Synthesis of ordered mesoporous carbons by a soft-templating method. Tanso, 2011, 2011, 70-74.	0.1	3
112	Electrochemical hydrogen evolution reaction over Co/P doped carbon derived from triethyl phosphite-deposited 2D nanosheets of Co/Al layered double hydroxides. International Journal of Hydrogen Energy, 2022, 47, 10638-10645.	7.1	3
113	Morphology Control of Ordered Mesoporous Carbon Using Organic-Templating Approach. , 0, , .		2
114	Carbon Dioxide Adsorption Properties in Ion-exchanged Zeolites Rho. Chemistry Letters, 2012, 41, 125-126.	1.3	2
115	Phaseâ€Controlled Synthesis of Zeolites from Sodium Aluminosilicate under OSDA/Solventâ€Free Conditions. European Journal of Inorganic Chemistry, 2021, 2021, 1405-1409.	2.0	2
116	Single atomic Co coordinated with N in microporous carbon for oxygen reduction reaction obtained from Co/2-methylimidazole anchored to Y zeolite as a template. Materials Today Chemistry, 2021, 20, 100410.	3.5	2
117	Design of Zr- and Al-Doped *BEA-Type Zeolite to Boost LDPE Cracking. ACS Omega, 2022, 7, 12971-12977.	3.5	2
118	Self-assembly strategy for Co/N-doped meso/microporous carbon toward superior oxygen reduction catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127395.	4.7	1
119	MOF–based Membranes for Gas and Liquid Separations. Membrane, 2019, 44, 2-9.	0.0	1
120	Precisely controlled synthesis of Co/N species containing porous carbon for oxygen reduction reaction <i>via</i> anion exchange and CO ₂ activation. New Journal of Chemistry, 2022, 46, 2038-2043.	2.8	1
121	Hydrogen peroxide splitting on Nafion-coated graphene quantum dots/carbon nitride photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 430, 113949.	3.9	1
122	A Novel Strategy to Enhance Acid Strength of Zeolites by Incorporating Ge into Zeolite Framework. ChemistrySelect, 2022, 7, .	1.5	1
123	Vapor phase preparations of mesoporous silica thin films for ultra-low-k dielectrics. Studies in Surface Science and Catalysis, 2007, 165, 595-598.	1.5	Ο
124	Mesoporous aluminosilicates assembled from dissolved LTA precursor. Studies in Surface Science and Catalysis, 2008, , 341-344.	1.5	0
125	Synthesis of ordered mesoporous carbons in film morphology using organic-organic interaction approach. Studies in Surface Science and Catalysis, 2008, 174, 657-660.	1.5	0
126	Synthesis and Characterization of Ni-doped Silica Membranes Prepared Using a Hybrid Sol–Gel/CVD Method. Chemistry Letters, 2011, 40, 1159-1160.	1.3	0

#	Article	IF	CITATIONS
127	Periodic porous silica for low dielectric films. Membrane, 2003, 28, 177-184.	0.0	0
128	Ordered Mesoporous Silica Films Synthesized from Vapor Phase. Materials Research Society Symposia Proceedings, 2003, 775, 3121.	0.1	0
129	Vapor Treatments of Spin-On Mesostructured Silica Films for the Enhancement of Structural Stability. Materials Research Society Symposia Proceedings, 2003, 775, 331.	0.1	0
130	Crystal Size Engineering and Membrane Formation of ZIF–8 MOF. Membrane, 2016, 41, 165-172.	0.0	0
131	Crystal Size Control of Metal Organic Framework for Function Design and Membrane Separation. Membrane, 2018, 43, 224-230.	0.0	0
132	State–of–the–Art of Hydrocarbon Separation by Metal–Organic Framework Membranes. Membrane, 2020, 45, 286-294.	0.0	0
133	Solid-Phase Synthesis of Porous Carbon using Zinc Oxide Template. Journal of the Society of Powder Technology, Japan, 2021, 58, 497-504.	0.1	Ο