
George Lauder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7530846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunable stiffness in fish robotics: mechanisms and advantages. Bioinspiration and Biomimetics, 2022, 17, 011002.	1.5	25
2	Effect of Tunable Stiffness on the Hydrodynamic Performance of a Tuna Tail Informed Flexible Propulsor. , 2022, , .		2
3	An autonomously swimming biohybrid fish designed with human cardiac biophysics. Science, 2022, 375, 639-647.	6.0	95
4	Multi-animal pose estimation, identification and tracking with DeepLabCut. Nature Methods, 2022, 19, 496-504.	9.0	165
5	Robotics as a Comparative Method in Ecology and Evolutionary Biology. Integrative and Comparative Biology, 2022, , .	0.9	5
6	Fish-inspired segment models for undulatory steady swimming. Bioinspiration and Biomimetics, 2022, 17, 046007.	1.5	5
7	A Fish-Like Soft-Robotic Model Generates a Diversity of Swimming Patterns. Integrative and Comparative Biology, 2022, 62, 735-748.	0.9	1
8	Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot. Bioinspiration and Biomimetics, 2021, 16, 026018.	1.5	33
9	Tuna robotics: hydrodynamics of rapid linear accelerations. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202726.	1.2	13
10	Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming. Bioinspiration and Biomimetics, 2021, 16, 026019.	1.5	71
11	Hydrodynamic advantages of in-line schooling. Bioinspiration and Biomimetics, 2021, 16, 046002.	1.5	29
12	The Role of the Tail or Lack Thereof in the Evolution of Tetrapod Aquatic Propulsion. Integrative and Comparative Biology, 2021, 61, 398-413.	0.9	12
13	Fin–fin interactions during locomotion in a simplified biomimetic fish model. Bioinspiration and Biomimetics, 2021, 16, 046023.	1.5	17
14	A Soft Robotic Model to Study the Effects of Stiffness on Fish-Like Undulatory Swimming. , 2021, , 153-169.		1
15	Dermal Denticle Diversity in Sharks: Novel Patterns on the Interbranchial Skin. Integrative Organismal Biology, 2021, 3, obab034.	0.9	15
16	Convergence of undulatory swimming kinematics across a diversity of fishes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
17	Hydrodynamics of median-fin interactions in fish-like locomotion: Effects of fin shape and movement. Physics of Fluids, 2020, 32, .	1.6	75
18	Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model. Bioinspiration and Biomimetics, 2020, 15, 046008.	1.5	43

George Lauder

#	Article	IF	CITATIONS
19	Longer development provides firstâ€feeding fish time to escape hydrodynamic constraints. Journal of Morphology, 2020, 281, 956-969.	0.6	3
20	The denticle surface of thresher shark tails: Threeâ€dimensional structure and comparison to other pelagic species. Journal of Morphology, 2020, 281, 938-955.	0.6	14
21	How zebrafish turn: analysis of pressure force dynamics and mechanical work. Journal of Experimental Biology, 2020, 223, .	0.8	19
22	Tunas as a high-performance fish platform for inspiring the next generation of autonomous underwater vehicles. Bioinspiration and Biomimetics, 2020, 15, 035007.	1.5	29
23	Airfoil-like mechanics generate thrust on the anterior body of swimming fishes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10585-10592.	3.3	40
24	Tuna locomotion: a computational hydrodynamic analysis of finlet function. Journal of the Royal Society Interface, 2020, 17, 20190590.	1.5	48
25	Tail-propelled aquatic locomotion in a theropod dinosaur. Nature, 2020, 581, 67-70.	13.7	57
26	How smooth is a dolphin? The ridged skin of odontocetes. Biology Letters, 2019, 15, 20190103.	1.0	24
27	Computational study of fish-shaped panel with simultaneously heaving and bending motion. , 2019, , .		6
28	Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes. Science Robotics, 2019, 4, .	9.9	169
29	The role of an overlooked adductor muscle in the feeding mechanism of ray-finned fishes: Predictions from simulations of a deep-sea viperfish. Zoology, 2019, 135, 125678.	0.6	1
30	Passing the Wake: Using Multiple Fins to Shape Forces for Swimming. Biomimetics, 2019, 4, 23.	1.5	36
31	Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins. Soft Robotics, 2018, 5, 375-388.	4.6	57
32	Shark skin-inspired designs that improve aerodynamic performance. Journal of the Royal Society Interface, 2018, 15, 20170828.	1.5	112
33	Scale diversity in bigeye tuna (<i>Thunnus obesus</i>): Fatâ€filled trabecular scales made of cellular bone. Journal of Morphology, 2018, 279, 828-840.	0.6	9
34	Robotics-inspired biology. Journal of Experimental Biology, 2018, 221, .	0.8	88
35	Diversity of dermal denticle structure in sharks: Skin surface roughness and threeâ€dimensional morphology. Journal of Morphology, 2018, 279, 1132-1154.	0.6	53
36	Hydrodynamic properties of biomimetic shark skin: effect of denticle size and swimming speed. Bioinspiration and Biomimetics, 2018, 13, 056014.	1,5	55

#	Article	IF	CITATIONS
37	Batoid locomotion: effects of speed on pectoral fin deformation in the little skate, <i>Leucoraja erinacea</i> . Journal of Experimental Biology, 2017, 220, 705-712.	0.8	42
38	Performance variation due to stiffness in a tuna-inspired flexible foil model. Bioinspiration and Biomimetics, 2017, 12, 016011.	1.5	19
39	Development of a vortex generator to perturb fish locomotion. Journal of Experimental Biology, 2017, 220, 959-963.	0.8	2
40	Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model. Soft Robotics, 2017, 4, 202-210.	4.6	82
41	Imaging biological surface topography <i>in situ</i> and <i>in vivo</i> . Methods in Ecology and Evolution, 2017, 8, 1626-1638.	2.2	26
42	Computational analysis of vortex dynamics and performance enhancement due to body–fin andÂfin–fin interactions in fish-like locomotion. Journal of Fluid Mechanics, 2017, 829, 65-88.	1.4	130
43	Structure of supporting elements in the dorsal fin of percid fishes. Journal of Morphology, 2017, 278, 1716-1725.	0.6	2
44	Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming. Journal of Experimental Biology, 2017, 220, 3967-3975.	0.8	16
45	Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry. Proceedings of the United States of America, 2017, 114, 13828-13833.	3.3	55
46	Control surfaces of aquatic vertebrates: active and passive design and function. Journal of Experimental Biology, 2017, 220, 4351-4363.	0.8	57
47	High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism–speed curve in fishes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13048-13053.	3.3	49
48	A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish. Nature, 2017, 547, 445-448.	13.7	151
49	Effect of input perturbation on the performance and wake dynamics of aquatic propulsion in heaving flexible foils. Physical Review Fluids, 2017, 2, .	1.0	16
50	On the rules for aquatic locomotion. Physical Review Fluids, 2017, 2, .	1.0	73
51	A pressure-based force and torque prediction technique for the study of fish-like swimming. PLoS ONE, 2017, 12, e0189225.	1.1	36
52	Ontogeny of head and caudal fin shape of an apex marine predator: The tiger shark (<scp><i>G</i></scp> <i>aleocerdo cuvier)</i> . Journal of Morphology, 2016, 277, 556-564.	0.6	34
53	Phototactic guidance of a tissue-engineered soft-robotic ray. Science, 2016, 353, 158-162.	6.0	534
54	Mechanisms of anguilliform locomotion in fishes studied using simple three-dimensional physical models. Bioinspiration and Biomimetics, 2016, 11, 046006.	1.5	8

#	Article	IF	CITATIONS
55	Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex. Journal of Fluid Mechanics, 2016, 788, 407-443.	1.4	99
56	Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus. Zoology, 2016, 119, 414-420.	0.6	11
57	A biorobotic model of the suction feeding system in largemouth bass: the roles of motor program speed and hyoid kinematics. Journal of Experimental Biology, 2016, 219, 2048-59.	0.8	8
58	Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161294.	1.2	35
59	Fish optimize sensing and respiration during undulatory swimming. Nature Communications, 2016, 7, 11044.	5.8	45
60	Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis macrochirus. Zoology, 2016, 119, 182-195.	0.6	41
61	Structure, biomimetics, and fluid dynamics of fish skin surfaces. Physical Review Fluids, 2016, 1, .	1.0	73
62	Maximizing the efficiency of a flexible propulsor using experimental optimization. Journal of Fluid Mechanics, 2015, 767, 430-448.	1.4	127
63	Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing. Bioinspiration and Biomimetics, 2015, 10, 066010.	1.5	68
64	Swimming Mechanics and Energetics of Elasmobranch Fishes. Fish Physiology, 2015, , 219-253.	0.2	29
65	Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model. Bioinspiration and Biomimetics, 2015, 10, 056019.	1.5	82
66	Fish Locomotion: Recent Advances and New Directions. Annual Review of Marine Science, 2015, 7, 521-545.	5.1	201
67	Hydrodynamics of C-Start Escape Responses of Fish as Studied with Simple Physical Models. Integrative and Comparative Biology, 2015, 55, 728-739.	0.9	43
68	Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion. Bioinspiration and Biomimetics, 2015, 10, 036002.	1.5	112
69	Fish Locomotion: Biology and Robotics of Body and Fin-Based Movements. Springer Tracts in Mechanical Engineering, 2015, , 25-49.	0.1	30
70	Flexible propulsors in ground effect. Bioinspiration and Biomimetics, 2014, 9, 036008.	1.5	101
71	Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion. Journal of Experimental Biology, 2014, 217, 2110-20.	0.8	77
72	Biomimetic shark skin: design, fabrication and hydrodynamic function. Journal of Experimental Biology, 2014, 217, 1656-1666.	0.8	340

#	Article	IF	CITATIONS
73	Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion. Zoology, 2014, 117, 269-281.	0.6	49
74	Scaling the propulsive performance of heaving flexible panels. Journal of Fluid Mechanics, 2014, 738, 250-267.	1.4	193
75	Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors. Zoology, 2014, 117, 337-348.	0.6	38
76	Functional morphology of the fin rays of teleost fishes. Journal of Morphology, 2013, 274, 1044-1059.	0.6	49
77	Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device. Bioinspiration and Biomimetics, 2013, 8, 046013.	1.5	54
78	Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). I: Fin-ray orientation and movement. Journal of Experimental Biology, 2012, 215, 2869-2880.	0.8	26
79	Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). II: Fin-ray curvature. Journal of Experimental Biology, 2012, 215, 2881-2890.	0.8	25
80	Challenging zebrafish escape responses by increasing water viscosity. Journal of Experimental Biology, 2012, 215, 1854-1862.	0.8	34
81	Hydrodynamics of the bluegill sunfish C-start escape response: three-dimensional simulations and comparison with experimental data. Journal of Experimental Biology, 2012, 215, 671-684.	0.8	97
82	A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance. Journal of Experimental Biology, 2012, 215, 56-67.	0.8	171
83	The hydrodynamic function of shark skin and two biomimetic applications. Journal of Experimental Biology, 2012, 215, 785-795.	0.8	236
84	Passive Robotic Models of Propulsion by the Bodies and Caudal Fins of Fish. Integrative and Comparative Biology, 2012, 52, 576-587.	0.9	81
85	Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming by freshwater stingray <i>Potamotrygon orbignyi</i> . Journal of Experimental Biology, 2012, 215, 3231-41.	0.8	57
86	Dynamics of freely swimming flexible foils. Physics of Fluids, 2012, 24, .	1.6	162
87	Bioinspiration from fish for smart material design and function. Smart Materials and Structures, 2011, 20, 094014.	1.8	89
88	Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3670-3678.	1.2	61
89	Robotic Models for Studying Undulatory Locomotion in Fishes. Marine Technology Society Journal, 2011, 45, 41-55.	0.3	103
90	Swimming hydrodynamics: ten questions and the technical approaches needed to resolve them. Experiments in Fluids, 2011, 51, 23-35.	1.1	54

#	Article	IF	CITATIONS
91	Use of Biorobotic Models of Highly Deformable Fins for Studying the Mechanics and Control of Fin Forces in Fishes. Integrative and Comparative Biology, 2011, 51, 176-189.	0.9	41
92	Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinspiration and Biomimetics, 2011, 6, 026004.	1.5	120
93	A Biologically Derived Pectoral Fin for Yaw Turn Manoeuvres. Applied Bionics and Biomechanics, 2010, 7, 41-55.	0.5	23
94	Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. Journal of Fluid Mechanics, 2010, 645, 345-373.	1.4	125
95	The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin. Journal of Experimental Biology, 2010, 213, 4043-4054.	0.8	125
96	Caudal fin shape modulation and control during acceleration, braking and backing maneuvers in bluegill sunfish, Lepomis macrochirus. Journal of Experimental Biology, 2009, 212, 277-286.	0.8	100
97	Terrestrial feeding in the Mudskipper Periophthalmus (Pisces: Teleostei): A cineradiographic analysis. Journal of Zoology, 2009, 193, 517-530.	0.8	47
98	Low-dimensional models and performance scaling of a highly deformable fish pectoral fin. Journal of Fluid Mechanics, 2009, 631, 311-342.	1.4	73
99	Functional regionalization of the pectoral fin of the benthic longhorn sculpin during station holding and swimming. Journal of Zoology, 2008, 276, 159-167.	0.8	28
100	Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes. Journal of Experimental Biology, 2008, 211, 187-195.	0.8	85
101	Advances in Comparative Physiology from High-Speed Imaging of Animal and Fluid Motion. Annual Review of Physiology, 2008, 70, 143-163.	5.6	36
102	Hydrodynamics of the escape response in bluegill sunfish, <i>Lepomis macrochirus</i> . Journal of Experimental Biology, 2008, 211, 3359-3369.	0.8	144
103	Speed-dependent intrinsic caudal fin muscle recruitment during steady swimming in bluegill sunfish, <i>Lepomis macrochirus</i> . Journal of Experimental Biology, 2008, 211, 587-598.	0.8	71
104	The ontogeny of fin function during routine turns in zebrafish <i>Danio rerio</i> . Journal of Experimental Biology, 2007, 210, 3374-3386.	0.8	43
105	Hydrodynamic function of dorsal and anal fins in brook trout(Salvelinus fontinalis). Journal of Experimental Biology, 2007, 210, 325-339.	0.8	114
106	The mechanics of active fin-shape control in ray-finned fishes. Journal of the Royal Society Interface, 2007, 4, 243-256.	1.5	129
107	Fish biorobotics: kinematics and hydrodynamics of self-propulsion. Journal of Experimental Biology, 2007, 210, 2767-2780.	0.8	289
108	Hydrodynamics of a biologically inspired tandem flapping foil configuration. Theoretical and Computational Fluid Dynamics, 2007, 21, 155-170.	0.9	186

#	Article	IF	CITATIONS
109	Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins. Experiments in Fluids, 2007, 43, 641-653.	1.1	133
110	Passive propulsion in vortex wakes. Journal of Fluid Mechanics, 2006, 549, 385.	1.4	308
111	Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish. Bioinspiration and Biomimetics, 2006, 1, S25-S34.	1.5	121
112	Learning from fish: Kinematics and experimental hydrodynamics for roboticists. International Journal of Automation and Computing, 2006, 3, 325-335.	4.5	131
113	Ontogeny of form and function: Locomotor morphology and drag in zebrafish (Danio rerio). Journal of Morphology, 2006, 267, 1099-1109.	0.6	66
114	A Biorobotic Pectoral Fin for Autonomous Undersea Vehicles. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
115	Hydrodynamics of Undulatory Propulsion. Fish Physiology, 2005, 23, 425-468.	0.2	154
116	Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. Journal of Experimental Biology, 2005, 208, 4479-4494.	0.8	115
117	Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering. Journal of Experimental Biology, 2005, 208, 2753-2763.	0.8	163
118	Hydrodynamic function of the shark's tail. Nature, 2004, 430, 850-850.	13.7	86
119	The hydrodynamics of eel swimming. Journal of Experimental Biology, 2004, 207, 1825-1841.	0.8	356
120	Biomechanics of Locomotion in Sharks, Rays, and Chimeras. Marine Biology, 2004, , 139-164.	0.1	47
121	Experimental Hydrodynamics and Evolution: Function of Median Fins in Ray-finned Fishes. Integrative and Comparative Biology, 2002, 42, 1009-1017.	0.9	67
122	Forces, Fishes, and Fluids: Hydrodynamic Mechanisms of Aquatic Locomotion. Physiology, 2002, 17, 235-240.	1.6	77
123	Hydrodynamics of caudal fin locomotion by chub mackerel, <i>Scomber japonicus</i> (Scombridae). Journal of Experimental Biology, 2002, 205, 1709-1724.	0.8	184
124	Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. Journal of Experimental Biology, 2002, 205, 2365-2374.	0.8	97
125	The C-start escape response of <i>Polypterus senegalus</i> : bilateral muscle activity and variation during stage 1 and 2. Journal of Experimental Biology, 2002, 205, 2591-2603.	0.8	74
126	Quantification of the wake of rainbow trout (<i>Oncorhynchus mykiss</i>) using three-dimensional stereoscopic digital particle image velocimetry. Journal of Experimental Biology, 2002, 205, 3271-3279.	0.8	66

George Lauder

#	Article	IF	CITATIONS
127	Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae). Journal of Experimental Biology, 2002, 205, 1709-24.	0.8	94
128	Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. Journal of Experimental Biology, 2002, 205, 2365-74.	0.8	60
129	Aquatic prey capture in ray-finned fishes: A century of progress and new directions. Journal of Morphology, 2001, 248, 99-119.	0.6	112
130	Functional morphology of the pectoral fins in bamboo sharks,Chiloscyllium plagiosum: Benthic vs. Pelagic station-holding. Journal of Morphology, 2001, 249, 195-209.	0.6	86
131	Flight of the robofly. Nature, 2001, 412, 688-689.	13.7	13
132	Locomotion in scombrid fishes: visualization of flow around the caudal peduncle and finlets of the chub mackerel <i>Scomber japonicus</i> . Journal of Experimental Biology, 2001, 204, 2251-2263.	0.8	58
133	Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. Journal of Experimental Biology, 2001, 204, 2943-2958.	0.8	214
134	Locomotion in scombrid fishes: visualization of flow around the caudal peduncle and finlets of the chub mackerel Scomber japonicus. Journal of Experimental Biology, 2001, 204, 2251-63.	0.8	29
135	Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. Journal of Experimental Biology, 2001, 204, 2943-58.	0.8	120
136	Function of the Caudal Fin During Locomotion in Fishes: Kinematics, Flow Visualization, and Evolutionary Patterns. American Zoologist, 2000, 40, 101-122.	0.7	109
137	Locomotion in scombrid fishes: morphology and kinematics of the finlets of the chub mackerel Scomber japonicus. Journal of Experimental Biology, 2000, 203, 2247-59.	0.8	14
138	Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata. Journal of Experimental Biology, 2000, 203, 2261-78.	0.8	61
139	A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers. Journal of Experimental Biology, 2000, 203, 2379-93.	0.8	87
140	Function of the dorsal fin in bluegill sunfish: Motor patterns during four distinct locomotor behaviors. , 1996, 228, 307-326.		74
141	Speed Effects on Midline Kinematics During Steady Undulatory Swimming of Largemouth Bass, <i>Micropterus Salmoides</i> . Journal of Experimental Biology, 1995, 198, 585-602.	0.8	123
142	Metazoan Transitions: <i>Invasions of the Land</i> . The Transitions of Organisms from Aquatic to Terrestrial Life. Malcolm S. Gordon and Everett C. Olson. Columbia University Press, New York, 1995. xix, 312 pp., illus. \$65 or £49 Science, 1995, 268, 1208-1208.	6.0	0
143	Modeling red muscle power output during steady and unsteady swimming in largemouth bass. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1994, 267, R481-R488.	0.9	26
144	How swimming fish use slow and fast muscle fibers: implications for models of vertebrate muscle recruitment. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994, 175, 123-31.	0.7	136

#	Article	IF	CITATIONS
145	Comparative morphology of the myomeres and axial skeleton in four genera of centrarchid fishes. Journal of Morphology, 1994, 220, 185-205.	0.6	25
146	Experimental morphology of the feeding mechanism in salamanders. Journal of Morphology, 1991, 210, 33-44.	0.6	8
147	Prey transport in the tiger salamander: Quantitative electromyography and muscle function in tetrapods. The Journal of Experimental Zoology, 1991, 260, 1-17.	1.4	25
148	Muscle Recruitment During Terrestrial Locomotion: How Speed and Temperature Affect Fibre Type Use in a Lizard. Journal of Experimental Biology, 1990, 152, 101-128.	0.8	54
149	Caudal Fin Locomotion in Ray-finned Fishes: Historical and Functional Analyses. American Zoologist, 1989, 29, 85-102.	0.7	86
150	Functional morphology of the ?tongue-bite? in the osteoglossomorph fishNotopterus. Journal of Morphology, 1989, 202, 379-408.	0.6	39
151	Morphology and function of the feeding apparatus of the lungfish,Lepidosiren paradoxa (Dipnoi). Journal of Morphology, 1986, 187, 81-108.	0.6	120
152	Functional design of the feeding mechanism in lower vertebrates: unidirectional and bidirectional flow systems in the tiger salamander. Zoological Journal of the Linnean Society, 1986, 88, 277-290.	1.0	76
153	Functional morphology of the feeding mechanism in aquatic ambystomatid salamanders. Journal of Morphology, 1985, 185, 297-326.	0.6	127
154	Water Flow Patterns During Prey Capture By Teleost Fishes. Journal of Experimental Biology, 1984, 113, 143-150.	0.8	56
155	Pressure and Water Flow Patterns in the Respiratory Tract of the Bass <i>(Micropterus) Tj ETQq1 1 0.784314 rgI</i>	3T /Overlo	ck 10 Tf 50 3
156	Functional and morphological bases of trophic specialization in sunfishes (Teleostei, centrarchidae). Journal of Morphology, 1983, 178, 1-21.	0.6	136
157	Prey Capture Hydrodynamics in Fishes: Experimental Tests of Two Models. Journal of Experimental Biology, 1983, 104, 1-13.	0.8	91
158	Structure and function in the tail of the Pumpkinseed sunfish (Lepomis gibbosus). Journal of Zoology, 1982, 197, 483-495.	0.8	27
159	Patterns of Evolution in the Feeding Mechanism of Actinopterygian Fishes. American Zoologist, 1982, 22, 275-285.	0.7	176
160	Form and function: structural analysis in evolutionary morphology. Paleobiology, 1981, 7, 430-442.	1.3	382
161	Prey capture by Luciocephalus pulcher: implications for models of jaw protrusion in teleost fishes. Environmental Biology of Fishes, 1981, 6, 257-268.	0.4	96
162	Edward Phelps Allis: discovery of his anatomical illustrations. Biological Journal of the Linnean Society, 1981, 16, 285-291.	0.7	0

#	Article	IF	CITATIONS
163	Evolution of the feeding mechanism in primitive actionopterygian fishes: A functional anatomical analysis ofPolypterus, Lepisosteus, andAmia. Journal of Morphology, 1980, 163, 283-317.	0.6	252
164	Asymmetrical Muscle Activity During Feeding in the Gar, <i>Lepisosteus Oculatus</i> . Journal of Experimental Biology, 1980, 84, 17-32.	0.8	47
165	Functional Anatomy of Feeding in the Bluegill Sunfish, <i>Lepomis Macrochirus</i> : <i>In Vivo</i> Measurement of Bone Strain. Journal of Experimental Biology, 1980, 84, 33-55.	0.8	47
166	The Suction Feeding Mechanism in Sunfishes (<i>Lepomis</i>): An Experimental Analysis. Journal of Experimental Biology, 1980, 88, 49-72.	0.8	171