Wim Leemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/753047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cryogenically formed discharge waveguide. Physical Review Accelerators and Beams, 2021, 24, .	1.6	2
2	Design of a prototype laser-plasma injector for an electron synchrotron. Physical Review Accelerators and Beams, 2021, 24, .	1.6	5
3	Emittance preserving thin film plasma mirrors for GeV scale laser plasma accelerators. Physical Review Accelerators and Beams, 2021, 24, .	1.6	4
4	Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration. Physics of Plasmas, 2020, 27, .	1.9	9
5	Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV. Physics of Plasmas, 2020, 27, 053102.	1.9	21
6	A compact, high resolution energy, and emittance diagnostic for electron beams using active plasma lenses. Applied Physics Letters, 2020, 116, .	3.3	6
7	Gas density structure of supersonic flows impinged on by thin blades for laser–plasma accelerator targets. Physics of Fluids, 2020, 32, 066108.	4.0	11
8	Absolute calibration of GafChromic film for very high flux laser driven ion beams. Review of Scientific Instruments, 2019, 90, 053301.	1.3	17
9	Ion acceleration in laser generated megatesla magnetic vortex. Physics of Plasmas, 2019, 26, .	1.9	32
10	Control of transverse wakefields via phase-matched laser modes in parabolic plasma channels. Physics of Plasmas, 2019, 26, 013107.	1.9	3
11	Petawatt Laser Guiding and Electron Beam Acceleration to 8ÂGeV in a Laser-Heated Capillary Discharge Waveguide. Physical Review Letters, 2019, 122, 084801.	7.8	557
12	High-sensitivity plasma density retrieval in a common-path second-harmonic interferometer through simultaneous group and phase velocity measurement. Physics of Plasmas, 2019, 26, 023106.	1.9	10
13	Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile. Physics of Plasmas, 2018, 25, .	1.9	29
14	Filtering higher-order laser modes using leaky plasma channels. Physics of Plasmas, 2018, 25, .	1.9	4
15	Accurate modeling of the hose instability in plasma wakefield accelerators. Physics of Plasmas, 2018, 25, 056703.	1.9	12
16	Parametric emittance measurements of electron beams produced by a laser plasma accelerator. Plasma Physics and Controlled Fusion, 2018, 60, 054015.	2.1	4
17	Comparative study of active plasma lenses in high-quality electron accelerator transport lines. Physics of Plasmas, 2018, 25, .	1.9	17
18	An accurate and efficient laser-envelope solver for the modeling of laser-plasma accelerators. Plasma Physics and Controlled Fusion, 2018, 60, 014002.	2.1	27

#	Article	IF	CITATIONS
19	Suppression of Beam Hosing in Plasma Accelerators with Ion Motion. Physical Review Letters, 2018, 121, 264802.	7.8	24
20	Density characterization of discharged gas-filled capillaries through common-path two-color spectral-domain interferometry. Optics Letters, 2018, 43, 2776.	3.3	12
21	Direct measurement of focusing fields in active plasma lenses. Physical Review Accelerators and Beams, 2018, 21, .	1.6	14
22	Free-electron lasers driven by laser plasma accelerators. AIP Conference Proceedings, 2017, , .	0.4	16
23	Laser mode control using leaky plasma channels. AIP Conference Proceedings, 2017, , .	0.4	1
24	Transport and phase-space manipulation of laser-plasma accelerated electron beams using active plasma lenses. AIP Conference Proceedings, 2017, , .	0.4	4
25	Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications. Physics of Plasmas, 2017, 24, .	1.9	24
26	Measured Emittance Dependence on the Injection Method in Laser Plasma Accelerators. Physical Review Letters, 2017, 119, 104801.	7.8	46
27	Gas density structure of supersonic flows impinged on by thin blades for laser-plasma accelerators. AIP Conference Proceedings, 2017, , .	0.4	4
28	Saturation of the Hosing Instability in Quasilinear Plasma Accelerators. Physical Review Letters, 2017, 119, 244801.	7.8	24
29	Plasma equilibrium inside various cross-section capillary discharges. Physics of Plasmas, 2017, 24, .	1.9	14
30	Nonuniform discharge currents in active plasma lenses. Physical Review Accelerators and Beams, 2017, 20, .	1.6	40
31	Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector. Physical Review Accelerators and Beams, 2017, 20, .	1.6	42
32	Emittance preservation in plasma-based accelerators with ion motion. Physical Review Accelerators and Beams, 2017, 20, .	1.6	26
33	Efficiency considerations for high-energy physics applications of laser-plasma accelerators. AIP Conference Proceedings, 2016, , .	0.4	7
34	Demonstration of a high repetition rate capillary discharge waveguide. Journal of Applied Physics, 2016, 119, .	2.5	39
35	Transient behavior of a supersonic three-dimensional micronozzle with an intersecting capillary. Journal of Applied Physics, 2016, 119, .	2.5	5
36	Reflectance characterization of tape-based plasma mirrors. Physics of Plasmas, 2016, 23, .	1.9	29

#	Article	IF	CITATIONS
37	Radiation pressure acceleration: The factors limiting maximum attainable ion energy. Physics of Plasmas, 2016, 23, .	1.9	48
38	Staging of laser-plasma accelerators. Physics of Plasmas, 2016, 23, 056705.	1.9	22
39	Multistage coupling of independent laser-plasma accelerators. Nature, 2016, 530, 190-193.	27.8	250
40	Tunable polarization plasma channel undulator for narrow bandwidth photon emission. Physical Review Accelerators and Beams, 2016, 19, .	1.6	19
41	Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy. Physical Review Special Topics: Accelerators and Beams, 2015, 18, .	1.8	28
42	Pulse evolution and plasma-wave phase velocity in channel-guided laser-plasma accelerators. Physical Review E, 2015, 92, 023109.	2.1	21
43	Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams. Physical Review Letters, 2015, 115, 184802.	7.8	147
44	Plasma density diagnostic for capillary-discharge based plasma channels. Physics of Plasmas, 2015, 22, .	1.9	12
45	Enhancement of Maximum Attainable Ion Energy in the Radiation Pressure Acceleration Regime Using a Guiding Structure. Physical Review Letters, 2015, 114, 105003.	7.8	32
46	Plasma Undulator Based on Laser Excitation of Wakefields in a Plasma Channel. Physical Review Letters, 2015, 114, 145003.	7.8	44
47	Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator	1.9	36
48	Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 234013.	1.5	66
49	Thermal emittance from ionization-induced trapping in plasma accelerators. Physical Review Special Topics: Accelerators and Beams, 2014, 17, .	1.8	37
50	Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime. Physical Review Letters, 2014, 113, 245002.	7.8	767
51	Measurement of the laser-pulse group velocity in plasma waveguides. Physical Review E, 2014, 89, 063103.	2.1	17
52	Two-Color Laser-Ionization Injection. Physical Review Letters, 2014, 112, 125001.	7.8	96
53	Numerical investigation of electron self-injection in the nonlinear bubble regime. Physics of Plasmas, 2013, 20, .	1.9	53
54	Laser red shifting based characterization of wakefield excitation in a laser-plasma accelerator. Physics of Plasmas, 2013, 20, .	1.9	29

#	Article	IF	CITATIONS
55	Laser-heater assisted plasma channel formation in capillary discharge waveguides. Physics of Plasmas, 2013, 20, 020703.	1.9	42
56	Low-Emittance Electron Bunches from a Laser-Plasma Accelerator Measured using Single-Shot X-Ray Spectroscopy. Physical Review Letters, 2012, 109, 064802.	7.8	155
57	Coupled beam hose and self-modulation instabilities in overdense plasma. Physical Review E, 2012, 86, 026402.	2.1	35
58	Quasi-matched propagation of ultra-short, intense laser pulses in plasma channels. Physics of Plasmas, 2012, 19, 053101.	1.9	44
59	Theory of ionization-induced trapping in laser-plasma accelerators. Physics of Plasmas, 2012, 19, .	1.9	135
60	Control of focusing fields in laser-plasma accelerators using higher-order modes. Physical Review Special Topics: Accelerators and Beams, 2011, 14, .	1.8	44
61	Tunable laser plasma accelerator based on longitudinal density tailoring. Nature Physics, 2011, 7, 862-866.	16.7	291
62	Group velocity and pulse lengthening of mismatched laser pulses in plasma channels. Physics of Plasmas, 2011, 18, .	1.9	22
63	Electron beam charge diagnostics for laser plasma accelerators. Physical Review Special Topics: Accelerators and Beams, 2011, 14, .	1.8	21
64	Efficient Modeling of Laser-Plasma Accelerators with INF&RNO. AIP Conference Proceedings, 2010, , .	0.4	36
65	Plasma channel diagnostic based on laser centroid oscillations. Physics of Plasmas, 2010, 17, 056706.	1.9	26
66	Physics considerations for laser-plasma linear colliders. Physical Review Special Topics: Accelerators and Beams, 2010, 13, .	1.8	242
67	Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators. Physics of Plasmas, 2010, 17, .	1.9	57
68	Wavefront-sensor-based electron density measurements for laser-plasma accelerators. Review of Scientific Instruments, 2010, 81, 033108.	1.3	29
69	Physics of laser-driven plasma-based electron accelerators. Reviews of Modern Physics, 2009, 81, 1229-1285.	45.6	1,989
70	Laser-driven plasma-wave electron accelerators. Physics Today, 2009, 62, 44-49.	0.3	268
71	Broadband single-shot electron spectrometer for GeV-class laser-plasma-based accelerators. Review of Scientific Instruments, 2008, 79, 053301.	1.3	37
72	Plasma-Density-Gradient Injection of Low Absolute-Momentum-Spread Electron Bunches. Physical Review Letters, 2008, 100, 215004.	7.8	315

Wim Leemans

#	Article	IF	CITATIONS
73	Temporal Characterization of Femtosecond Laser-Plasma-Accelerated Electron Bunches Using Terahertz Radiation. Physical Review Letters, 2006, 96, 014801.	7.8	160
74	GeV electron beams from a centimetre-scale accelerator. Nature Physics, 2006, 2, 696-699.	16.7	1,521
75	High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature, 2004, 431, 538-541.	27.8	1,773
76	Beat wave injection of electrons into plasma waves using two interfering laser pulses. Physical Review E, 2004, 70, 016402.	2.1	107
77	Observation of Terahertz Emission from a Laser-Plasma Accelerated Electron Bunch Crossing a Plasma-Vacuum Boundary. Physical Review Letters, 2003, 91, 074802.	7.8	327
78	Radiation sources and diagnostics with ultrashort electron bunches. Physics of Plasmas, 2002, 9, 2428-2436.	1.9	9
79	Synchrotron radiation from electron beams in plasma-focusing channels. Physical Review E, 2002, 65, 056505.	2.1	271
80	Raman Forward Scattering of High-Intensity Chirped Laser Pulses. AIP Conference Proceedings, 2002, , .	0.4	0
81	Betatron radiation from electron beams in plasma focusing channels. AIP Conference Proceedings, 2001, , .	0.4	6
82	Nonparaxial propagation of intense laser pulses in plasmas. AIP Conference Proceedings, 2001, , .	0.4	1
83	Studies of space-charge effects in ultrashort electron bunches. AIP Conference Proceedings, 2001, , .	0.4	0
84	Fluid modeling of intense laser-plasma interactions. AIP Conference Proceedings, 2001, , .	0.4	4
85	Nonlinear Theory of Nonparaxial Laser Pulse Propagation in Plasma Channels. Physical Review Letters, 2000, 84, 3081-3084.	7.8	88
86	FEMTOSECOND ELECTRON AND X-RAY GENERATION BY LASER AND PLASMA-BASED SOURCES. , 2000, , .		1
87	Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction. Physical Review Letters, 1999, 83, 336-339.	7.8	184
88	Guiding of laser pulses in plasma channels created by the ignitor-heater technique. Physics of Plasmas, 1999, 6, 2269-2277.	1.9	159
89	Electron Injection into Plasma Wakefields by Colliding Laser Pulses. Physical Review Letters, 1997, 79, 2682-2685.	7.8	432
90	Femtosecond X-ray Pulses at 0.4 A Generated by 90Â Thomson Scattering: A Tool for Probing the Structural Dynamics of Materials. Science, 1996, 274, 236-238.	12.6	439