Yariv Brotman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/753017/publications.pdf

Version: 2024-02-01

51 papers 2,355 citations

236925 25 h-index 223800 46 g-index

52 all docs 52 docs citations

52 times ranked 3082 citing authors

#	Article	IF	CITATIONS
1	Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. Plant Cell, 2022, 34, 557-578.	6.6	29
2	Bringing more players into play: Leveraging stress in genome wide association studies. Journal of Plant Physiology, 2022, 271, 153657.	3.5	11
3	Autophagy is required for lipid homeostasis during dark-induced senescence. Plant Physiology, 2021, 185, 1542-1558.	4.8	22
4	Multi-omics analysis of early leaf development in Arabidopsis thaliana. Patterns, 2021, 2, 100235.	5.9	24
5	When vegetation indicates reproduction: The affinity between leaf morphology and flowering commitment in the lily meristem. Physiologia Plantarum, 2021, 172, 2022-2033.	5.2	O
6	Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, $2021, 18, 747-756$.	19.0	403
7	The utility of metabolomics as a tool to inform maize biology. Plant Communications, 2021, 2, 100187.	7.7	17
8	Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biology, 2021, 22, 260.	8.8	44
9	It takes two: Reciprocal scion-rootstock relationships enable salt tolerance in 'Hass' avocado. Plant Science, 2021, 312, 111048.	3.6	3
10	Tomato Yellow Leaf Curl Virus (TYLCV) Promotes Plant Tolerance to Drought. Cells, 2021, 10, 2875.	4.1	19
11	Metabolomic Analysis of Natural Variation in Arabidopsis. Methods in Molecular Biology, 2021, 2200, 393-411.	0.9	O
12	Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species <i>Colobanthus quitensis</i> . New Phytologist, 2020, 225, 754-768.	7.3	32
13	The Acetate Pathway Supports Flavonoid and Lipid Biosynthesis in Arabidopsis. Plant Physiology, 2020, 182, 857-869.	4.8	35
14	Modelâ€assisted identification of metabolic engineering strategies for <i>Jatropha curcas</i> lipid pathways. Plant Journal, 2020, 104, 76-95.	5.7	11
15	Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nature Plants, 2020, 6, 1031-1043.	9.3	33
16	Liquid Chromatography–Mass Spectrometry (LCâ€MS)â€Based Analysis for Lipophilic Compound Profiling in Plants. Current Protocols in Plant Biology, 2020, 5, e20109.	2.8	16
17	Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation. Expert Review of Proteomics, 2020, 17, 243-255.	3.0	70
18	Correlation-based network analysis combined with machine learning techniques highlight the role of the GABA shunt in Brachypodium sylvaticum freezing tolerance. Scientific Reports, 2020, 10, 4489.	3.3	13

#	Article	IF	CITATIONS
19	Towards model-driven characterization and manipulation of plant lipid metabolism. Progress in Lipid Research, 2020, 80, 101051.	11.6	28
20	Lowâ€temperature tolerance of the Antarctic species <scp><i>Deschampsia antarctica</i></scp> : A complex metabolic response associated with nutrient remobilization. Plant, Cell and Environment, 2020, 43, 1376-1393.	5.7	21
21	Tomato yellow leaf curl virus (TYLCV)-resistant tomatoes share molecular mechanisms sustaining resistance with their wild progenitor Solanum habrochaites but not with TYLCV-susceptible tomatoes. Plant Science, 2020, 295, 110439.	3.6	13
22	Balancing the doubleâ€edged sword effect of increased resistant starch content and its impact on rice texture: its genetics and molecular physiological mechanisms. Plant Biotechnology Journal, 2020, 18, 1763-1777.	8.3	36
23	A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress. International Journal of Molecular Sciences, 2020, 21, 474.	4.1	62
24	Lipidomic and transcriptomic analysis reveals reallocation of carbon flux from cuticular wax into plastid membrane lipids in a glossy "Newhall―navel orange mutant. Horticulture Research, 2020, 7, 41.	6.3	23
25	Network Analysis Provides Insight into Tomato Lipid Metabolism. Metabolites, 2020, 10, 152.	2.9	10
26	Nano and Micro Unmanned Aerial Vehicles (UAVs): A New Grand Challenge for Precision Agriculture?. Current Protocols in Plant Biology, 2020, 5, e20103.	2.8	13
27	Largeâ€scale metabolite quantitative trait locus analysis provides new insights for highâ€quality maize improvement. Plant Journal, 2019, 99, 216-230.	5.7	37
28	Branched-Chain Amino Acid Catabolism Impacts Triacylglycerol Homeostasis in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2019, 179, 1502-1514.	4.8	26
29	The proof is in the bulb: glycerol influences key stages of lily development. Plant Journal, 2019, 97, 321-340.	5.7	21
30	An integrated multiâ€layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. Plant Journal, 2018, 93, 1116-1128.	5.7	38
31	Unraveling lipid metabolism in maize with timeâ€resolved multiâ€omics data. Plant Journal, 2018, 93, 1102-1115.	5.7	38
32	The metabolic (under)groundwork of the lily bulb toward sprouting. Physiologia Plantarum, 2018, 163, 436-449.	5.2	6
33	Salt tolerance of two perennial grass Brachypodium sylvaticum accessions. Plant Molecular Biology, 2018, 96, 305-314.	3.9	4
34	Mapping the Arabidopsis Metabolic Landscape by Untargeted Metabolomics at Different Environmental Conditions. Molecular Plant, 2018, 11, 118-134.	8.3	116
35	Differential lipidome remodeling during postharvest of peach varieties with different susceptibility to chilling injury. Physiologia Plantarum, 2018, 163, 2-17.	5.2	27
36	Quantitative Trait Loci Analysis Identifies a Prominent Gene Involved in the Production of Fatty Acid-Derived Flavor Volatiles in Tomato. Molecular Plant, 2018, 11, 1147-1165.	8.3	63

3

#	Article	IF	CITATIONS
37	Metabolome and Lipidome Profiles of Populus × canescens Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S. Frontiers in Plant Science, 2018, 9, 1292.	3.6	18
38	Guidelines for Sample Normalization to Minimize Batch Variation for Large-Scale Metabolic Profiling of Plant Natural Genetic Variance. Methods in Molecular Biology, 2018, 1778, 33-46.	0.9	13
39	Molecular Mechanisms Preventing Senescence in Response to Prolonged Darkness in a Desiccation-Tolerant Plant. Plant Physiology, 2018, 177, 1319-1338.	4.8	26
40	Cucumber ovaries inhibited by dominant fruit express a dynamic developmental program, distinct from either senescenceâ€determined or fruitâ€setting ovaries. Plant Journal, 2018, 96, 651-669.	5.7	8
41	Interorganelle Communication: Peroxisomal MALATE DEHYDROGENASE2 Connects Lipid Catabolism to Photosynthesis through Redox Coupling in Chlamydomonas. Plant Cell, 2018, 30, 1824-1847.	6.6	51
42	Integrated genomics-based mapping reveals the genetics underlying maize flavonoid biosynthesis. BMC Plant Biology, 2017, 17, 17.	3 . 6	34
43	Canalization of Tomato Fruit Metabolism. Plant Cell, 2017, 29, 2753-2765.	6.6	47
44	Combined Use of Genome-Wide Association Data and Correlation Networks Unravels Key Regulators of Primary Metabolism in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006363.	3 . 5	67
45	Broadening Our Portfolio in the Genetic Improvement of Maize Chemical Composition. Trends in Genetics, 2016, 32, 459-469.	6.7	25
46	Omic Relief for the Biotically Stressed: Metabolomics of Plant Biotic Interactions. Trends in Plant Science, 2016, 21, 781-791.	8.8	76
47	Using lipidomics for expanding the knowledge on lipid metabolism in plants. Biochimie, 2016, 130, 91-96.	2.6	39
48	The maize leaf lipidome shows multilevel genetic control and high predictive value for agronomic traits. Scientific Reports, 2013, 3, 2479.	3.3	29
49	Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance. PLoS Pathogens, 2013, 9, e1003221.	4.7	299
50	Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology (United Kingdom), 2012, 158, 139-146.	1.8	172
51	Trichoderma. Current Biology, 2010, 20, R390-R391.	3.9	85