Zijie Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7528672/publications.pdf

Version: 2024-02-01

		159585	189892
72	2,570	30	50
papers	citations	h-index	g-index
72	72	72	3251
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Optical trapping and manipulation for single-particle spectroscopy and microscopy. Journal of Chemical Physics, 2022, 157, .	3.0	5
2	Plasmonic SERS Biosensor Based on Multibranched Gold Nanoparticles Embedded in Polydimethylsiloxane for Quantification of Hematin in Human Erythrocytes. Analytical Chemistry, 2021, 93, 1025-1032.	6.5	17
3	Tunable optical tweezers by dynamically sculpting the phase profiles of light. Applied Physics Express, 2021, 14, 022009.	2.4	2
4	Phase Transition and Self-Stabilization of Light-Mediated Metal Nanoparticle Assemblies. ACS Nano, 2020, 14, 6616-6625.	14.6	17
5	Optical Sorting at the Single-Particle Level with Single-Nanometer Precision Using Coordinated Intensity and Phase Gradient Forces. ACS Nano, 2020, 14, 7602-7609.	14.6	19
6	Synergy of Intensity, Phase, and Polarization Enables Versatile Optical Nanomanipulation. Nano Letters, 2020, 20, 2778-2783.	9.1	24
7	Single-atom-sized Ni–N ₄ sites anchored in three-dimensional hierarchical carbon nanostructures for the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 15012-15022.	10.3	75
8	Making Permanent Optical Matter of Plasmonic Nanoparticles by in Situ Photopolymerization. Journal of Physical Chemistry C, 2020, 124, 4215-4220.	3.1	5
9	Rapidly and accurately shaping the intensity and phase of light for optical nano-manipulation. Nanoscale Advances, 2020, 2, 2540-2547.	4.6	16
10	Optical matter machines: angular momentum conversion by collective modes in optically bound nanoparticle arrays. Optica, 2020, 7, 1341.	9.3	28
11	Tuning Nanoparticle Electrodynamics by an Optical-Matter-Based Laser Beam Shaper. Nano Letters, 2019, 19, 3353-3358.	9.1	6
12	Light-Induced Self-Assembly: Silver-Nanowire-Based Interferometric Optical Tweezers for Enhanced Optical Trapping and Binding of Nanoparticles (Adv. Funct. Mater. 7/2019). Advanced Functional Materials, 2019, 29, 1970043.	14.9	1
13	Lightâ€Driven Selfâ€Healing of Nanoparticleâ€Based Metamolecules. Angewandte Chemie, 2019, 131, 4971-497	62.0	5
14	Lightâ€Driven Selfâ€Healing of Nanoparticleâ€Based Metamolecules. Angewandte Chemie - International Edition, 2019, 58, 4917-4922.	13.8	18
15	Three-dimensional optical trapping and orientation of microparticles for coherent X-ray diffraction imaging. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4018-4024.	7.1	18
16	Enhancing the Plasmon Resonance Absorption of Multibranched Gold Nanoparticles in the Near-Infrared Region for Photothermal Cancer Therapy: Theoretical Predictions and Experimental Verification. Chemistry of Materials, 2019, 31, 471-482.	6.7	36
17	Silverâ€Nanowireâ€Based Interferometric Optical Tweezers for Enhanced Optical Trapping and Binding of Nanoparticles. Advanced Functional Materials, 2019, 29, 1808258.	14.9	30
18	Mechanism study on extraordinary room-temperature CO sensing capabilities of Pd-SnO2 composite nanoceramics. Sensors and Actuators B: Chemical, 2019, 285, 49-55.	7.8	36

#	Article	IF	Citations
19	Polarization-Dependent Optical Binding of Plasmonic Nanoparticles. , 2019, , .		O
20	Probing Spatiotemporal Stability of Optical Matter by Polarization Modulation. Nano Letters, 2018, 18, 1396-1401.	9.1	21
21	Self-Organization of Metal Nanoparticles in Light: Electrodynamics–Molecular Dynamics Simulations and Optical Binding Experiments. Journal of Physical Chemistry Letters, 2018, 9, 545-549.	4.6	26
22	Crossover from positive to negative optical torque in mesoscale optical matter. Nature Communications, 2018, 9, 4897.	12.8	50
23	Dissipative Selfâ€Assembly of Anisotropic Nanoparticle Chains with Combined Electrodynamic and Electrostatic Interactions. Advanced Materials, 2018, 30, e1803238.	21.0	38
24	Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation. Nano Letters, 2018, 18, 7400-7406.	9.1	30
25	Sorting Metal Nanoparticles with Dynamic and Tunable Optical Driven Forces. Nano Letters, 2018, 18, 4500-4505.	9.1	38
26	Driven optical matter: Dynamics of electrodynamically coupled nanoparticles in an optical ring vortex. Physical Review E, 2017, 95, 022604.	2.1	47
27	Bragg diffraction from sub-micron particles isolated by optical tweezers. AIP Conference Proceedings, 2016, , .	0.4	1
28	Contrasting room-temperature hydrogen sensing capabilities of Pt-SnO2 and Pt-TiO2 composite nanoceramics. Nano Research, 2016, 9, 3528-3535.	10.4	22
29	Extraordinary room-temperature hydrogen sensing capabilities of porous bulk Pt–TiO 2 nanocomposite ceramics. International Journal of Hydrogen Energy, 2016, 41, 3307-3312.	7.1	39
30	Multifunctionalization of Nanostructured Metal Oxides. Journal of Nanomaterials, 2015, 2015, 1-1.	2.7	1
31	Fabrication of a Material Assembly of Silver Nanoparticles Using the Phase Gradients of Optical Tweezers. Physical Review Letters, 2015, 114, 143901.	7.8	76
32	Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters. Nature Communications, 2014, 5, 3751.	12.8	80
33	Enhancing Nanoparticle Electrodynamics with Gold Nanoplate Mirrors. Nano Letters, 2014, 14, 2436-2442.	9.1	32
34	Optical Printing of Electrodynamically Coupled Metallic Nanoparticle Arrays. Journal of Physical Chemistry C, 2014, 118, 19315-19321.	3.1	40
35	Hierarchical Photonic Synthesis of Hybrid Nanoparticle Assemblies. Journal of Physical Chemistry Letters, 2013, 4, 2630-2636.	4.6	23
36	Highly mobile and reactive state of hydrogen in metal oxide semiconductors at room temperature. Scientific Reports, 2013, 3, 3149.	3.3	31

#	Article	IF	Citations
37	Why Single-Beam Optical Tweezers Trap Gold Nanowires in Three Dimensions. ACS Nano, 2013, 7, 8794-8800.	14.6	49
38	Optical Vortex Induced Rotation of Silver Nanowires. Journal of Physical Chemistry Letters, 2013, 4, 2937-2942.	4.6	72
39	Generation of Ag–Ag ₂ O complex nanostructures by excimer laser ablation of Ag in water. Physical Chemistry Chemical Physics, 2013, 15, 3052-3056.	2.8	25
40	Guiding Spatial Arrangements of Silver Nanoparticles by Optical Binding Interactions in Shaped Light Fields. ACS Nano, 2013, 7, 1790-1802.	14.6	96
41	Antibacterial and surface-enhanced Raman scattering (SERS) activities of AgCl cubes synthesized by pulsed laser ablation in liquid. Applied Surface Science, 2012, 258, 9218-9222.	6.1	34
42	Pulsed laser ablation in liquid for micro-/nanostructure generation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 204-223.	11.6	280
43	Laser direct-write of single microbeads into spatially-ordered patterns. Biofabrication, 2012, 4, 025006.	7.1	27
44	Controlling the Position and Orientation of Single Silver Nanowires on a Surface Using Structured Optical Fields. ACS Nano, 2012, 6, 8144-8155.	14.6	46
45	Three-Dimensional Optical Trapping and Manipulation of Single Silver Nanowires. Nano Letters, 2012, 12, 5155-5161.	9.1	101
46	Hierarchical TiO ₂ Nanospheres with Dominant {001} Facets: Facile Synthesis, Growth Mechanism, and Photocatalytic Activity. Chemistry - A European Journal, 2012, 18, 7525-7532.	3.3	63
47	Generation of AgCl Cubes by Excimer Laser Ablation of Bulk Ag in Aqueous NaCl Solutions. Journal of Physical Chemistry C, 2011, 115, 5058-5062.	3.1	42
48	Fabrication and formation mechanism of hollow MgO particles by pulsed excimer laser ablation of Mg in liquid. Nanotechnology, 2011, 22, 265610.	2.6	25
49	Generation of Ag ₂ 0 Micro-/Nanostructures by Pulsed Excimer Laser Ablation of Ag in Aqueous Solutions of Polysorbate 80. Langmuir, 2011, 27, 851-855.	3.5	39
50	Structural evolution of hollow Al2O3 particles formed on excimer laser-induced bubbles. Materials Chemistry and Physics, 2011, 130, 403-408.	4.0	10
51	Charge carrier lifetime in boron carbide thin films. Applied Physics Letters, 2011, 98, .	3.3	15
52	Fabrication of Hourglass-Like ZnO Particles with Enhanced Blue Emission. Journal of Nanoscience and Nanotechnology, 2010, 10, 6594-6598.	0.9	5
53	Excimer Laser Production, Assembly, Sintering, and Fragmentation of Novel Fullerene-like Permalloy Particles in Liquid. Journal of Physical Chemistry C, 2010, 114, 3869-3873.	3.1	39
54	Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid. Chemical Physics Letters, 2010, 497, 205-207.	2.6	19

#	Article	IF	CITATIONS
55	Hollow nanoparticle generation on laser-induced cavitation bubbles via bubble interface pinning. Applied Physics Letters, 2010, 97, .	3.3	34
56	Anatase TiO2 single crystals with exposed {001} and {110} facets: facile synthesis and enhanced photocatalysis. Chemical Communications, 2010, 46, 1664.	4.1	329
57	Excimer laser ablation of a Pt target in water: the observation of hollow particles. Nanotechnology, 2010, 21, 145609.	2.6	47
58	Hollow Particles Formed on Laser-Induced Bubbles by Excimer Laser Ablation of Al in Liquid. Journal of Physical Chemistry C, 2010, 114, 11370-11374.	3.1	67
59	Transitions of Boron Carbide to B-C-N Thin Film. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	1
60	Fabrication of Permalloy Particles by Pulsed Laser Ablation in Water and Tween 80 Aqueous Solution. Materials Research Society Symposia Proceedings, 2009, 1230, 1.	0.1	0
61	Fabrication and sintering of mesocrystalline ZnO disks. Materials Letters, 2009, 63, 486-488.	2.6	3
62	Nanostructured ZnO network films deposited on Al2O3 substrates by chemical bath deposition. Thin Solid Films, 2009, 517, 1541-1545.	1.8	12
63	Tomato-Like ZnO Clusters with Complex Crystallization. Journal of Nanoscience and Nanotechnology, 2009, 9, 6627-6630.	0.9	1
64	Surfactant-Free Fabrication of ZnO Spheres and Pseudospherical Structures. Journal of Physical Chemistry C, 2008, 112, 9219-9222.	3.1	26
65	Impact of annealing on morphology and ferromagnetism of ZnO nanorods. Applied Physics Letters, 2008, 92, .	3.3	79
66	Position sensitivity of transient photoconductivity in oxygen-deficient manganite thin films. Journal Physics D: Applied Physics, 2008, 41, 135302.	2.8	3
67	Fabrication of Dispersed Permalloy Nanoparticles by Pulsed Laser Ablation in Aqua. Materials Research Society Symposia Proceedings, 2008, 1118, 8.	0.1	0
68	ZnO quasibicrystals formed by thermal annealing. Applied Physics Letters, 2008, 92, .	3.3	6
69	Large transient photoconductivity with fast response in oxygen-deficient La0.6Ca0.4MnO3â^Î/Si heterojunctions. Journal Physics D: Applied Physics, 2007, 40, 2797-2800.	2.8	4
70	Photoinduced Resistance Change in an Oxygen-Deficient La 0.9 Sr 0.1 MnO 3â ² Î Thin Film. Chinese Physics Letters, 2007, 24, 1397-1399.	3.3	3
71	Switching behavior of oxygen-deficient La0.6Ca0.4MnO3â^Î^thin films. Applied Physics Letters, 2007, 90, 224105.	3.3	9
72	Photovoltaic effects in obliquely deposited oxygen-deficient manganite thin film. Applied Physics Letters, 2007, 91, 104101.	3.3	6