Lucas A Garibaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7528040/publications.pdf

Version: 2024-02-01

53794 22832 14,104 122 45 112 citations h-index g-index papers 135 135 135 11541 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	12.6	1,767
2	Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 2019, 366, .	12.6	1,213
3	Safeguarding pollinators and their values to human well-being. Nature, 2016, 540, 220-229.	27.8	1,204
4	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	6.4	875
5	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	6.4	681
6	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	7.1	618
7	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
8	How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 2009, 103, 1579-1588.	2.9	499
9	Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency. Current Biology, 2008, 18, 1572-1575.	3.9	490
10	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
11	From research to action: enhancing crop yield through wild pollinators. Frontiers in Ecology and the Environment, 2014, 12, 439-447.	4.0	363
12	Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 2016, 351, 388-391.	12.6	342
13	Ecological Intensification: Bridging the Gap between Science and Practice. Trends in Ecology and Evolution, 2019, 34, 154-166.	8.7	318
14	Global growth and stability of agricultural yield decrease with pollinator dependence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5909-5914.	7.1	310
15	Farming Approaches for Greater Biodiversity, Livelihoods, and Food Security. Trends in Ecology and Evolution, 2017, 32, 68-80.	8.7	258
16	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	12.6	225
17	Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Global Change Biology, 2019, 25, 3516-3527.	9.5	206
18	Standard methods for pollination research with <i>Apis mellifera</i> . Journal of Apicultural Research, 2013, 52, 1-28.	1.5	200

#	Article	IF	Citations
19	A global-scale expert assessment of drivers and risks associated with pollinator decline. Nature Ecology and Evolution, 2021, 5, 1453-1461.	7.8	173
20	EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.	4.0	136
21	Working landscapes need at least 20% native habitat. Conservation Letters, 2021, 14, e12773.	5.7	116
22	Grazing history effects on above- and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant and Soil, 2008, 303, 177-189.	3.7	104
23	Policies for Ecological Intensification of Crop Production. Trends in Ecology and Evolution, 2019, 34, 282-286.	8.7	103
24	Global trends in nature's contributions to people. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32799-32805.	7.1	103
25	Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. Journal of Applied Ecology, 2019, 56, 100-106.	4.0	99
26	When mutualism goes bad: densityâ€dependent impacts of introduced bees on plant reproduction. New Phytologist, 2014, 204, 322-328.	7.3	95
27	Economic gain, stability of pollination and bee diversity decrease from southern to northern Europe. Basic and Applied Ecology, 2013, 14, 461-471.	2.7	90
28	Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia, 2011, 167, 117-129.	2.0	80
29	Impacts of honeybee density on crop yield: A metaâ€analysis. Journal of Applied Ecology, 2019, 56, 1152-1163.	4.0	78
30	Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks. PLoS ONE, 2015, 10, e0137198.	2.5	76
31	The impact of honey bee colony quality on crop yield and farmers' profit in apples and pears. Agriculture, Ecosystems and Environment, 2017, 248, 153-161.	5. 3	76
32	Economic Measures of Pollination Services: Shortcomings and Future Directions. Trends in Ecology and Evolution, 2016, 31, 927-939.	8.7	72
33	Projected climate change threatens pollinators and crop production in Brazil. PLoS ONE, 2017, 12, e0182274.	2.5	69
34	Pollinator shortage and global crop yield. Communicative and Integrative Biology, 2009, 2, 37-39.	1.4	66
35	Towards an integrated species and habitat management of crop pollination. Current Opinion in Insect Science, 2017, 21, 105-114.	4.4	66
36	Complementarity and synergisms among ecosystem services supporting crop yield. Global Food Security, 2018, 17, 38-47.	8.1	66

#	Article	IF	CITATIONS
37	Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands. Oecologia, 2007, 151, 650-662.	2.0	64
38	Trends in beekeeping and honey bee colony losses in Latin America. Journal of Apicultural Research, 2018, 57, 657-662.	1.5	63
39	Imperfect Vertical Transmission of the Endophyte Neotyphodium in Exotic Grasses in Grasslands of the Flooding Pampa. Microbial Ecology, 2009, 57, 740-748.	2.8	62
40	Latitudinal decrease in folivory within <i>Nothofagus pumilio</i> forests: dual effect of climate on insect density and leaf traits?. Global Ecology and Biogeography, 2011, 20, 609-619.	5.8	60
41	Agroecology in Large Scale Farming—A Research Agenda. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	60
42	Crop pollination management needs flowerâ€visitor monitoring and target values. Journal of Applied Ecology, 2020, 57, 664-670.	4.0	57
43	Transformation of agricultural landscapes in the Anthropocene: Nature's contributions to people, agriculture and food security. Advances in Ecological Research, 2020, 63, 193-253.	2.7	56
44	Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nature Ecology and Evolution, 2020, 4, 1150-1152.	7.8	54
45	Field margin floral enhancements increase pollinator diversity at the field edge but show no consistent spillover into the crop field: a metaâ€analysis. Insect Conservation and Diversity, 2020, 13, 519-531.	3.0	53
46	A review of social and economic performance of agroecology. International Journal of Agricultural Sustainability, 2017, 15, 632-644.	3.5	49
47	Exploring genotype, management, and environmental variables influencing grain yield of late-sown maize in central Argentina. Agricultural Systems, 2016, 146, 11-19.	6.1	43
48	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	2.6	43
49	Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in vertical compost bins. Waste Management, 2018, 76, 284-293.	7.4	42
50	Invasive bees and their impact on agriculture. Advances in Ecological Research, 2020, 63, 49-92.	2.7	42
51	Conservation needs to integrate knowledge across scales. Nature Ecology and Evolution, 2022, 6, 118-119.	7.8	40
52	Pollination and biological control research: are we neglecting two billion smallholders. Agriculture and Food Security, 2014, 3, .	4.2	39
53	The economic cost of losing native pollinator species for orchard production. Journal of Applied Ecology, 2020, 57, 599-608.	4.0	39
54	Functional group dominance and identity effects influence the magnitude of grassland invasion. Journal of Ecology, 2013, 101, 1114-1124.	4.0	37

#	Article	IF	CITATIONS
55	Time to Integrate Pollinator Science into Soybean Production. Trends in Ecology and Evolution, 2021, 36, 573-575.	8.7	36
56	Soil stabilisation by water repellency under no-till management for soils with contrasting mineralogy and carbon quality. Geoderma, 2019, 355, 113902.	5.1	35
57	Neotyphodium endophyte transmission to Lolium multiflorum seeds depends on the host plant fitness. Environmental and Experimental Botany, 2011, 71, 359-359.	4.2	33
58	The influence of local and landscape scale on single response traits in bees: A meta-analysis. Agriculture, Ecosystems and Environment, 2018, 256, 61-73.	5. 3	32
59	Positive outcomes between crop diversity and agricultural employment worldwide. Ecological Economics, 2019, 164, 106358.	5.7	32
60	Invasive bumble bees reduce nectar availability for honey bees by robbing raspberry flower buds. Basic and Applied Ecology, 2017, 19, 26-35.	2.7	31
61	Viability of <i>Neotyphodium</i> endophytic fungus and endophyte-infected and noninfected <i>Lolium multiflorum</i> seeds. Botany, 2009, 87, 88-96.	1.0	28
62	A nonlinear mixedâ€effects modeling approach for ecological data: Using temporal dynamics of vegetation moisture as an example. Ecology and Evolution, 2019, 9, 10225-10240.	1.9	28
63	Citizen science in developing countries: how to improve volunteer participation. Frontiers in Ecology and the Environment, 2020, 18, 101-108.	4.0	27
64	Research priorities for global food security under extreme events. One Earth, 2022, 5, 756-766.	6.8	27
65	Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography, 2020, 43, 209-221.	4.5	26
66	The effects of agroecological farming systems on smallholder livelihoods: a case study on push–pull system from Western Kenya. International Journal of Agricultural Sustainability, 2021, 19, 56-70.	3.5	24
67	Opportunities to reduce pollination deficits and address production shortfalls in an important insectâ€pollinated crop. Ecological Applications, 2021, 31, e02445.	3.8	24
68	Nutrient supply and bird predation additively control insect herbivory and tree growth in two contrasting forest habitats. Oikos, 2010, 119, 337-349.	2.7	23
69	Survival, growth and vulnerability to drought in fire refuges: implications for the persistence of a fire-sensitive conifer in northern Patagonia. Oecologia, 2015, 179, 1111-1122.	2.0	23
70	Disruption of Pollination Services by Invasive Pollinator Species. , 2017, , 203-220.		23
71	Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agriculture, Ecosystems and Environment, 2022, 335, 108003.	5.3	23
72	The sign and magnitude of tree–grass interaction along a global environmental gradient. Global Ecology and Biogeography, 2016, 25, 1510-1519.	5.8	22

#	Article	IF	Citations
73	Global changes in crop diversity: Trade rather than production enriches supply. Global Food Security, 2020, 26, 100385.	8.1	22
74	Disentangling the effects of shrubs and herbivores on tree regeneration in a dry Chaco forest (Argentina). Oecologia, 2015, 178, 847-854.	2.0	21
75	Honey bee impact on plants and wild bees in natural habitats. Ecosistemas, 2018, 27, 60-69.	0.4	21
76	Trade-off between seed number and weight: Influence of a grass–endophyte symbiosis. Basic and Applied Ecology, 2012, 13, 32-39.	2.7	19
77	Insect Pollination, More than Plant Nutrition, Determines Yield Quantity and Quality in Apple and Pear. Neotropical Entomology, 2020, 49, 525-532.	1.2	19
78	Negative impacts of dominance on bee communities: Does the influence of invasive honey bees differ from native bees?. Ecology, 2021, 102, e03526.	3.2	19
79	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	3.2	19
80	Demography and socioeconomic vulnerability influence fire occurrence in Bariloche (Argentina). Landscape and Urban Planning, 2013, 110, 64-73.	7.5	18
81	Symbiotic interactions as drivers of trade-offs in plants: effects of fungal endophytes on tall fescue. Fungal Diversity, 2013, 60, 5-14.	12.3	17
82	Contrasting responses of plants and pollinators to woodland disturbance. Austral Ecology, 2019, 44, 1040-1051.	1.5	16
83	The soil fungal community of native woodland in Andean Patagonian forest: A case study considering experimental forest management and seasonal effects. Forest Ecology and Management, 2020, 461, 117955.	3.2	16
84	Insect pollination enhances yield stability in two pollinator-dependent crops. Agriculture, Ecosystems and Environment, 2021, 320, 107573.	5.3	16
85	Role of foliar fungal endophytes in litter decomposition among species and population origins. Fungal Ecology, 2016, 21, 50-56.	1.6	15
86	Management options for reducing maize yield gaps in contrasting sowing dates. Field Crops Research, 2020, 251, 107779.	5.1	15
87	Building effective policies to conserve pollinators: translating knowledge into policy. Current Opinion in Insect Science, 2021, 46, 64-71.	4.4	15
88	Variable strength of topâ€down effects in <i>Nothofagus</i> forests: bird predation and insect herbivory during an ENSO event. Austral Ecology, 2009, 34, 359-367.	1.5	14
89	Forest fragments and natural vegetation patches within crop fields contribute to higher oilseed rape yields in Brazil. Agricultural Systems, 2020, 180, 102768.	6.1	14
90	Exploring connections between pollinator health and human health. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210158.	4.0	13

#	Article	IF	Citations
91	The value of pollinator-friendly practices: Synergies between natural and anthropogenic assets. Basic and Applied Ecology, 2016, 17, 659-667.	2.7	12
92	Geographic Variation in Festuca rubra L. Ploidy Levels and Systemic Fungal Endophyte Frequencies. PLoS ONE, 2016, 11, e0166264.	2.5	12
93	Positive forest cover effects on coffee yields are consistent across regions. Journal of Applied Ecology, 2022, 59, 330-341.	4.0	12
94	Perspectives from the Survey of Honey Bee Colony Losses During 2015–2016 in Argentina. Bee World, 2018, 95, 9-12.	0.8	11
95	Impact of introduced herbivores on understory vegetation along a regional moisture gradient in Patagonian beech forests. Forest Ecology and Management, 2016, 366, 11-22.	3.2	10
96	Effects of harvesting intensity and site conditions on biomass production of northern Patagonia shrublands. European Journal of Forest Research, 2020, 139, 881-891.	2.5	10
97	Diversity, functionality, and resilience under increasing harvesting intensities in woodlands of northern Patagonia. Forest Ecology and Management, 2020, 474, 118349.	3.2	10
98	Influence of edaphic and management factors on soils aggregates stability under no-tillage in Mollisols and Vertisols of the Pampa Region, Argentina. Soil and Tillage Research, 2021, 209, 104901.	5.6	10
99	Adsorption and affinity of Escherichia coli to different aggregate sizes of a silty clay soil. International Journal of Sediment Research, 2013, 28, 535-543.	3.5	9
100	A spatially extended model to assess the role of landscape structure on the pollination service of Apis mellifera. Ecological Modelling, 2020, 431, 109201.	2.5	9
101	Applying unmanned aerial vehicles (UAVs) to map shrubland structural attributes in northern Patagonia, Argentina. Canadian Journal of Forest Research, 2020, 50, 615-623.	1.7	9
102	The influences of progenitor filtering, domestication selection and the boundaries of nature on the domestication of grain crops. Functional Ecology, 2021, 35, 1998-2011.	3.6	9
103	Areas Requiring Restoration Efforts are a Complementary Opportunity to Support the Demand for Pollination Services in Brazil. Environmental Science & Eamp; Technology, 2021, 55, 12043-12053.	10.0	9
104	Galls of the Temperate Forest of Southern South America: Argentina and Chile., 2014,, 429-463.		9
105	Efecto de la tasa de descuento sobre la priorización de alternativas de manejo del matorral Norpatagónico argentino. Bosque, 2018, 39, 217-226.	0.3	8
106	Positive outcomes between herbivore diversity and tree survival: Responses to management intensity in a Patagonian forest. Forest Ecology and Management, 2020, 458, 117738.	3.2	7
107	Temporal Trends in Pollination Deficits and Its Potential Impacts on Chinese Agriculture. Journal of Economic Entomology, 2021, 114, 1431-1440.	1.8	7
108	Short-term responses to sheep grazing in a Patagonian steppe. Rangeland Journal, 2020, 42, 1.	0.9	5

#	Article	IF	Citations
109	Investments' role in ecosystem degradationâ€"Response. Science, 2020, 368, 377-377.	12.6	5
110	Direct and indirect relationships between logging intensity and regeneration of two timber species in the Dry Chaco of Argentina. Forest Ecology and Management, 2020, 474, 118343.	3.2	4
111	Effects of firewood harvesting intensity on biodiversity and ecosystem services in shrublands of northern Patagonia. Forest Ecosystems, 2020, 7, .	3.1	4
112	Fuelwood energy characteristics and biomass equations of the dominant species of northern Patagonian shrublands (Argentina). Southern Forests, 2020, 82, 56-64.	0.7	3
113	Data on litter quality of host grass plants with and without fungal endophytes. Data in Brief, 2016, 7, 1469-1472.	1.0	1
114	Intermediate harvesting intensities enhance native tree performance of contrasting species while conserving herbivore diversity in a Patagonian woodland. Forest Ecology and Management, 2021, 483, 118719.	3.2	1
115	Implications of landscape configuration on understory forage productivity: a remote sensing assessment of native forests openings. Agroforestry Systems, 2021, 95, 1675.	2.0	1
116	Decoding information in multilayer ecological networks: The keystone species case. Ecological Modelling, 2021, 460, 109734.	2.5	1
117	Invader complexes or generalist interactions? Seasonal effects of a disturbance gradient on plants and floral visitors. Forest Ecology and Management, 2022, 506, 119963.	3.2	1
118	Fungal endophyte mediated occurrence of seminiferous and pseudoviviparous panicles in Festuca rubra. Fungal Diversity, 2014, 66, 69-76.	12.3	0
119	Multidimensional Performance of Farming Approaches: A Reply to Mehrabi et al Trends in Ecology and Evolution, 2017, 32, 721-722.	8.7	0
120	Early response of <i>Nothofagus antarctica</i> forests to thinning intensity in northern Patagonia. Canadian Journal of Forest Research, 2021, 51, 493-499.	1.7	0
121	Shrubland Management in Northwestern Patagonia: An Evaluation of Its Short-Term Effects on Multiple Ecosystem Services. Natural and Social Sciences of Patagonia, 2021, , 99-114.	0.4	0
122	Mite density, not diversity, declines with biomass removal in Patagonian woodlands. Applied Soil Ecology, 2022, 169, 104242.	4.3	0