Ming-Tang Chen 鳿~å,

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/752797/publications.pdf

Version: 2024-02-01

110 papers 9,596 citations

32 h-index 70 g-index

110 all docs

 $\begin{array}{c} 110 \\ \\ \text{docs citations} \end{array}$

times ranked

110

3844 citing authors

#	Article	IF	CITATIONS
1	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	4.5	6
2	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	8.3	163
3	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.	8.3	20
4	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	8.3	215
5	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	8.3	142
6	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophysical Journal Letters, 2022, 930, L15.	8.3	137
7	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	8.3	568
8	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	8.3	21
9	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	8.3	43
10	A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20.	8.3	20
11	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	8.3	187
12	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	8.3	215
13	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	8.3	67
14	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	8.3	297
15	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	8.3	56
16	Constraints on black-hole charges with the 2017 EHT observations of M87*. Physical Review D, 2021, 103, .	4.7	126
17	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	4.5	43
18	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	10.1	65

#	Article	IF	CITATIONS
19	Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Physical Review Letters, 2020, 125, 141104.	7.8	190
20	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	4.5	44
21	THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophysical Journal, 2020, 897, 139.	4.5	47
22	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	5.1	54
23	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	4.5	51
24	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	7.7	175
25	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	8.3	519
26	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	8.3	618
27	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	8.3	806
28	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	8.3	2,264
29	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	8.3	814
30	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	8.3	897
31	The 1.4Âmm Core of Centaurus A: First VLBI Results with the South Pole Telescope. Astrophysical Journal, 2018, 861, 129.	4.5	6
32	Electronics instrumentation for the Greenland telescope. , 2018, , .		3
33	The Greenland telescope: Thule operations. , 2018, , .		8
34	The first-light receivers for the Greenland Telescope. , 2018, , .		4
35	GLT receiver commissioning at JCMT and future JCMT instrumentation. , 2018, , .		1
36	Control and monitoring system for the Greenland telescope: computers, network and software. , 2018, , .		3

#	Article	IF	CITATIONS
37	Commissioning status of the Greenland telescope. , 2018, , .		4
38	3.5 Year Monitoring of 225 GHz Opacity at the Summit of Greenland. Publications of the Astronomical Society of the Pacific, 2017, 129, 025001.	3.1	11
39	AMiBA: CLUSTER SUNYAEV–ZEL'DOVICH EFFECT OBSERVATIONS WITH THE EXPANDED 13-ELEMENT ARR Astrophysical Journal, 2016, 830, 91.	AY _{.4.5}	1
40	The Greenland Telescope: antenna retrofit status and future plans. Proceedings of SPIE, 2016, , .	0.8	6
41	A Low-cost 4 Bit, 10 Giga-samples-per-second Analog-to-digital Converter Printed Circuit Board Assembly for FPGA-based Backends. Publications of the Astronomical Society of the Pacific, 2016, 128, 115002.	3.1	6
42	180–220 GHz MMIC amplifier using 70-nm GaAs MHEMT technology. , 2016, , .		4
43	Current and near-term instrumentation at the James Clerk Maxwell Telescope. , 2016, , .		1
44	First-generation science cases for ground-based terahertz telescopes. Publication of the Astronomical Society of Japan, $2016, 68, \ldots$	2.5	12
45	Next generation heterodyne array for JCMT. Proceedings of SPIE, 2016, , .	0.8	0
46	Development of digital sideband separating down-conversion for Yuan-Tseh Lee Array. , 2016, , .		1
47	The JCMT as operated by the East Asian Observatory: a brief (but thrilling) history. Proceedings of SPIE, 2016, , .	0.8	0
48	The JCMT future instrumentation project. Proceedings of SPIE, 2016, , .	0.8	0
49	THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW. Astrophysical Journal Letters, 2015, 808, L1.	8.3	90
50	Advances in Silicon Based Millimeter-Wave Monolithic Integrated Circuits. Micromachines, 2014, 5, 1373-1415.	2.9	4
51	Absorption Properties of Supercooled Liquid Water between 31 and 225 GHz: Evaluation of Absorption Models Using Ground-Based Observations. Journal of Applied Meteorology and Climatology, 2014, 53, 1028-1045.	1.5	23
52	Review of Millimeter-Wave MMIC Mixers. IEEE Design and Test, 2014, 31, 38-45.	1.2	5
53	The Greenland Telescope (GLT): antenna status and future plans. , 2014, , .		2
54	A wideband MMIC low noise amplifier with series and shunt feedback. , 2014, , .		2

#	Article	IF	Citations
55	Greenland telescope project: Direct confirmation of black hole with subâ€millimeter VLBI. Radio Science, 2014, 49, 564-571.	1.6	39
56	Instrumentation for single-dish observations with The Greenland Telescope. , 2014, , .		4
57	225GHz opacity measurements at Summit camp, Greenland, for the GreenLand Telescope (GLT) site testing. , 2014, , .		3
58	Development of a Mach–Zehnder Modulator Photonic Local Oscillator Source. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3005-3014.	4.6	1
59	PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMIBA-13 COPLANAR INTERFEROMETER. Astrophysical Journal, 2013, 769, 71.	4.5	1
60	Cryogenic 8–18 GHz MMIC LNA using GaAs PHEMT., 2013,,.		7
61	Greenland Telescope (GLT) Project. EPJ Web of Conferences, 2013, 61, 01008.	0.3	2
62	ALMA nutator design and preliminary performances. Proceedings of SPIE, 2012, , .	0.8	O
63	225 GHz Atmospheric Opacity Measurements from Two Arctic Sites. Proceedings of the International Astronomical Union, 2012, 8, 204-207.	0.0	4
64	A cryogenic 30& \pm x2013;50 GHz balanced low noise amplifier using 0.15-& \pm x03BC; m MHEMT process for radio astronomy applications., 2012,,.		2
65	Opacity measurements at Summit Camp on Greenland and PEARL in northern Canada with a 225 GHz tipping radiometer. Proceedings of SPIE, 2012, , .	0.8	2
66	1.2Âm Shielded Cassegrain Antenna for Close-Packed Radio Interferometer. Publications of the Astronomical Society of the Pacific, 2011, 123, 198-212.	3.1	2
67	Stiffness Study of a Hexapod Telescope Platform. IEEE Transactions on Antennas and Propagation, 2011, 59, 2022-2028.	5.1	5
68	AMiBA: SCALING RELATIONS BETWEEN THE INTEGRATED COMPTON- <i>y</i> AND X-RAY-DERIVED TEMPERATURE, MASS, AND LUMINOSITY. Astrophysical Journal, 2010, 716, 758-765.	4.5	14
69	AMiBA WIDEBAND ANALOG CORRELATOR. Astrophysical Journal, 2010, 716, 746-757.	4.5	17
70	AMiBA: SUNYAEV-ZEL'DOVICH EFFECT-DERIVED PROPERTIES AND SCALING RELATIONS OF MASSIVE GALAXY CLUSTERS. Astrophysical Journal, 2010, 713, 584-591.	4.5	7
71	CONTAMINATION OF THE CENTRAL SUNYAEV-ZEL'DOVICH DECREMENTS IN AMIBA GALAXY CLUSTER OBSERVATIONS. Astrophysical Journal, 2010, 720, 608-613.	4.5	3
72	Control characteristics of the ALMA Nutator. , 2010, , .		0

#	Article	IF	CITATIONS
73	ARRAY FOR MICROWAVE BACKGROUND ANISOTROPY: OBSERVATIONS, DATA ANALYSIS, AND RESULTS FOR SUNYAEV-ZEL'DOVICH EFFECTS. Astrophysical Journal, 2009, 694, 1619-1628.	4.5	22
74	AMiBA: SYSTEM PERFORMANCE. Astrophysical Journal, 2009, 694, 1629-1636.	4.5	15
75	TESTS OF AMiBA DATA INTEGRITY. Astrophysical Journal, 2009, 694, 1637-1642.	4.5	14
76	AMIBA: BROADBAND HETERODYNE COSMIC MICROWAVE BACKGROUND INTERFEROMETRY. Astrophysical Journal, 2009, 694, 1664-1669.	4.5	25
77	MASS AND HOT BARYONS IN MASSIVE GALAXY CLUSTERS FROM SUBARU WEAK-LENSING AND AMIBA SUNYAEV-ZEL'DOVICH EFFECT OBSERVATIONS. Astrophysical Journal, 2009, 694, 1643-1663.	4.5	99
78	A Decision-Making Model of Budget Allocation for the Restoration of Traditional Settlement Buildings. , 2009, , .		0
79	A Novel automatic level control for gain stabilization in a radio interferometry. , 2009, , .		O
80	A distributed control system for a radio telescope with six-meter hexapod mount., 2009,,.		2
81	THE YUAN-TSEH LEE ARRAY FOR MICROWAVE BACKGROUND ANISOTROPY. Astrophysical Journal, 2009, 694, 1610-1618.	4.5	35
82	THE AMIBA HEXAPOD TELESCOPE MOUNT. Astrophysical Journal, 2009, 694, 1670-1684.	4.5	34
83	Ka-Band Wide-Bandwidth Voltage-Controlled Oscillators in InGaP-GaAs HBT Technology. , 2008, , .		5
84	Wide-Bandwidth InGaP-GaAs HBT Voltage-Controlled Oscillators in K- and Ku-Band. , 2008, , .		5
85	From Millimeter-wave Technology to Cosmology - The AMiBA Telescope. , 2008, , .		1
86	Cryogenic testing and multi-chip module design of a 31.3-45GHz MHEMT MMIC-based heterodyne receiver for radio astronomy. Proceedings of SPIE, 2008, , .	0.8	2
87	AMIBA: FIRST-YEAR RESULTS FOR SUNYAEV-ZEL'DOVICH EFFECT. Modern Physics Letters A, 2008, 23, 1675-1686.	1.2	6
88	320-420GHz Low-Noise Heterodyne Receiver Modules for the Submillimeter Array of Taiwan., 2008,,.		0
89	AMiBA first year observation., 2008,,.		3
90	Platform deformation refined pointing and phase correction for the AMiBA hexapod telescope. Proceedings of SPIE, 2008, , .	0.8	3

#	Article	IF	CITATIONS
91	Photogrammetry measurement of the AMiBA 6-meter platform. Proceedings of SPIE, 2008, , .	0.8	4
92	Submillimeter-Wave Phasor Beam-Pattern Measurement Based on Two-Stage Heterodyne Mixing With Unitary Harmonic Difference. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 1200-1208.	4.6	3
93	Progress of the array of microwave background anisotropy (AMiBA). , 2006, , .		5
94	Initial operation of the array for microwave background anisotropy (AMiBA). , 2006, 6275, 487.		3
95	THE AMIBA PROJECT. Modern Physics Letters A, 2004, 19, 993-1000.	1.2	10
96	CFRP platform and hexapod mount for the Array of MIcrowave Background Anisotropy (AMiBA). , 2004, , .		8
97	A wideband analog correlator system for AMiBA. , 2004, 5498, 455.		17
98	Edgemagnetoplasmons in a partially screened system. Physica B: Condensed Matter, 2003, 329-333, 268-269.	2.7	2
99	Full-polarization W-band receiver for CMB detection. , 2003, 4855, 312.		2
100	<title>Taiwanese antennas for the Sub-Millimeter Array: a progress report</title> ., 2000, 4015, 169.		2
101	<title>Progress report on the Sub-Millimeter Array in Taiwan: the receiver system</title> ., 2000, 4015, 247.		0
102	<code><title>Receiver-beam</code> characterization for the SMA<math><</math>/title><math>.</math>, 1998, , <math>.</math></td><td></td><td>3</td></tr><tr><td>103</td><td>Characterization of corrugated feed horns at 216 and 300 GHz. Journal of Infrared, Millimeter and Terahertz Waves, 1997, 18, 1697-1711.</td><td>0.6</td><td>4</td></tr><tr><td>104</td><td>Optical cell for observing solidification of helium. Cryogenics, 1995, 35, 71.</td><td>1.7</td><td>4</td></tr><tr><td>105</td><td>Superfluid helium on solid hydrogen. Physica B: Condensed Matter, 1994, 197, 278-282.</td><td>2.7</td><td>20</td></tr><tr><td>106</td><td>Extraordinary behavior of 4He on hydrogen and deuterium surfaces. Journal of Low Temperature Physics, 1992, 89, 125-134.</td><td>1.4</td><td>50</td></tr><tr><td>107</td><td>A near-field alignment technique at millimeter and sub-millimeter wavelengths. , 0, , .</td><td></td><td>1</td></tr><tr><td>108</td><td>Developments of MM- and sub-MM wavelength radio telescopes in Taiwan. , 0, , .</td><td></td><td>0</td></tr></tbody></table></title></code>		

#	ARTICLE	IF	CITATIONS
109	600-696GHz Heterodyne Receiver with Fixed-Tuned SIS Mixer and Martin-Puplett LO/RF Diplexer. , 0, , .		1
110	A 5 Giga Samples Per Second 8-Bit Analog to Digital Printed Circuit Board for Radio Astronomy. Publications of the Astronomical Society of the Pacific, 0, , 000-000.	3.1	6