Alex Toker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7527074/publications.pdf

Version: 2024-02-01

135 papers 21,345 citations

70 h-index 19749 117 g-index

236 all docs

236 docs citations

236 times ranked

26686 citing authors

#	Article	IF	CITATIONS
1	AKT/PKB Signaling: Navigating the Network. Cell, 2017, 169, 381-405.	28.9	2,454
2	Direct Regulation of the <i>Akt</i> Proto-Oncogene Product by Phosphatidylinositol-3,4-bisphosphate. Science, 1997, 275, 665-668.	12.6	1,437
3	Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature, 1997, 387, 673-676.	27.8	1,290
4	Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 2012, 486, 405-409.	27.8	1,107
5	Thrombin receptor ligation and activated rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell, 1995, 82, 643-653.	28.9	653
6	Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Current Biology, 1998, 8, 1069-1078.	3.9	600
7	Activation of Phosphoinositide 3-OH Kinase by the $\hat{l}\pm 6\hat{l}^24$ Integrin Promotes Carcinoma Invasion. Cell, 1997, 91, 949-960.	28.9	588
8	Determination of the Specific Substrate Sequence Motifs of Protein Kinase C Isozymes. Journal of Biological Chemistry, 1997, 272, 952-960.	3.4	516
9	Akt/Protein Kinase B Is Regulated by Autophosphorylation at the Hypothetical PDK-2 Site. Journal of Biological Chemistry, 2000, 275, 8271-8274.	3.4	436
10	Cellular Signaling. Cell, 2000, 103, 185-188.	28.9	394
10		28.9	394
	Cellular Signaling. Cell, 2000, 103, 185-188. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology,		
11	Cellular Signaling. Cell, 2000, 103, 185-188. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology, 2002, 4, 540-544. Akt Blocks Breast Cancer Cell Motility and Invasion through the Transcription Factor NFAT.	10.3	390
11 12	Cellular Signaling. Cell, 2000, 103, 185-188. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology, 2002, 4, 540-544. Akt Blocks Breast Cancer Cell Motility and Invasion through the Transcription Factor NFAT. Molecular Cell, 2005, 20, 539-550.	9.7	390 390
11 12 13	Cellular Signaling. Cell, 2000, 103, 185-188. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology, 2002, 4, 540-544. Akt Blocks Breast Cancer Cell Motility and Invasion through the Transcription Factor NFAT. Molecular Cell, 2005, 20, 539-550. PI3K signaling in cancer: beyond AKT. Current Opinion in Cell Biology, 2017, 45, 62-71. Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1).	10.3 9.7 5.4	390 390 364
11 12 13 14	Cellular Signaling. Cell, 2000, 103, 185-188. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology, 2002, 4, 540-544. Akt Blocks Breast Cancer Cell Motility and Invasion through the Transcription Factor NFAT. Molecular Cell, 2005, 20, 539-550. PI3K signaling in cancer: beyond AKT. Current Opinion in Cell Biology, 2017, 45, 62-71. Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Current Biology, 1998, 8, 1366-1375. A rapid method for determining protein kinase phosphorylation specificity. Nature Methods, 2004, 1,	10.3 9.7 5.4 3.9	390 390 364 357
11 12 13 14	Cellular Signaling. Cell, 2000, 103, 185-188. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology, 2002, 4, 540-544. Akt Blocks Breast Cancer Cell Motility and Invasion through the Transcription Factor NFAT. Molecular Cell, 2005, 20, 539-550. PI3K signaling in cancer: beyond AKT. Current Opinion in Cell Biology, 2017, 45, 62-71. Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Current Biology, 1998, 8, 1366-1375. A rapid method for determining protein kinase phosphorylation specificity. Nature Methods, 2004, 1, 27-29.	10.3 9.7 5.4 3.9	390 390 364 357

#	Article	IF	CITATIONS
19	Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. EMBO Journal, 2003, 22, 109-120.	7.8	295
20	Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature, 2014, 508, 541-545.	27.8	285
21	Akt Signaling and Cancer: Surviving but not Moving On: Figure 1 Cancer Research, 2006, 66, 3963-3966.	0.9	273
22	The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Current Opinion in Cell Biology, 1998, 10, 254-261.	5.4	257
23	Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cellular Signalling, 2009, 21, 470-476.	3.6	226
24	Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nature Cell Biology, 2009, 11, 397-408.	10.3	218
25	Protein Kinase D Mediates Mitochondrion-to-Nucleus Signaling and Detoxification from Mitochondrial Reactive Oxygen Species. Molecular and Cellular Biology, 2005, 25, 8520-8530.	2.3	216
26	Protein Kinase Cδ Selectively Regulates Protein Kinase D-Dependent Activation of NF-κB in Oxidative Stress Signaling. Molecular and Cellular Biology, 2004, 24, 2614-2626.	2.3	215
27	mTOR Drives Its Own Activation via SCFβTrCP-Dependent Degradation of the mTOR Inhibitor DEPTOR. Molecular Cell, 2011, 44, 290-303.	9.7	212
28	Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells. Journal of Cell Biology, 1999, 146, 1147-1160.	5.2	203
29	Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein. FEBS Journal, 1990, 191, 421-429.	0.2	200
30	Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer. Nature Cell Biology, 2016, 18, 572-578.	10.3	197
31	Insulin Activates Protein Kinases C-ζ and C-λ by an Autophosphorylation-dependent Mechanism and Stimulates Their Translocation to GLUT4 Vesicles and Other Membrane Fractions in Rat Adipocytes. Journal of Biological Chemistry, 1999, 274, 25308-25316.	3.4	190
32	Acetylation-Dependent Regulation of Skp2 Function. Cell, 2012, 150, 179-193.	28.9	180
33	p70 S6 Kinase Is Regulated by Protein Kinase Cζ and Participates in a Phosphoinositide 3-Kinase-Regulated Signalling Complex. Molecular and Cellular Biology, 1999, 19, 2921-2928.	2.3	178
34	A Secreted Form of ADAM9 Promotes Carcinoma Invasion through Tumor-Stromal Interactions. Cancer Research, 2005, 65, 4728-4738.	0.9	170
35	Signaling specificity in the Akt pathway in biology and disease. Advances in Biological Regulation, 2014, 55, 28-38.	2.3	165
36	pVHL suppresses kinase activity of Akt in a proline-hydroxylation–dependent manner. Science, 2016, 353, 929-932.	12.6	165

#	Article	IF	CITATIONS
37	The Actin-Bundling Protein Palladin Is an Akt1-Specific Substrate that Regulates Breast Cancer Cell Migration. Molecular Cell, 2010, 38, 333-344.	9.7	155
38	A Phosphorylation State-specific Antibody Recognizes Hsp27, a Novel Substrate of Protein Kinase D. Journal of Biological Chemistry, 2005, 280, 15013-15019.	3.4	151
39	Adaptive Reprogramming of $\langle i \rangle$ De Novo $\langle i \rangle$ Pyrimidine Synthesis Is a Metabolic Vulnerability in Triple-Negative Breast Cancer. Cancer Discovery, 2017, 7, 391-399.	9.4	147
40	PDGF induces an early and a late wave of PI 3-kinase activity, and only the late wave is required for progression through G1. Current Biology, 1999, 9, 512-521.	3.9	143
41	Akt/PKB Signaling in Cancer: A Function in Cell Motility and Invasion. Cell Cycle, 2006, 5, 603-605.	2.6	142
42	Regulation of novel protein kinase C Îμ by phosphorylation. Biochemical Journal, 2002, 363, 537-545.	3.7	139
43	NFAT Induces Breast Cancer Cell Invasion by Promoting the Induction of Cyclooxygenase-2. Journal of Biological Chemistry, 2006, 281, 12210-12217.	3.4	139
44	SGK3 Mediates INPP4B-Dependent PI3K Signaling in Breast Cancer. Molecular Cell, 2014, 56, 595-607.	9.7	133
45	FOXO3a Promotes Tumor Cell Invasion through the Induction of Matrix Metalloproteinases. Molecular and Cellular Biology, 2009, 29, 4906-4917.	2.3	132
46	Multiple isoforms of a protein kinase C inhibitor (KCIP-1/14-3-3) from sheep brain. FEBS Journal, 1992, 206, 453-461.	0.2	126
47	The Lipid Products of Phosphoinositide 3-Kinase Increase Cell Motility through Protein Kinase C. Journal of Biological Chemistry, 1997, 272, 6465-6470.	3.4	126
48	3-Phosphoinositide–Dependent Kinase 1 Potentiates Upstream Lesions on the Phosphatidylinositol 3-Kinase Pathway in Breast Carcinoma. Cancer Research, 2009, 69, 6299-6306.	0.9	126
49	Targeting Akt3 Signaling in Triple-Negative Breast Cancer. Cancer Research, 2014, 74, 964-973.	0.9	124
50	D3 Phosphoinositides and Outside-in integrin Signaling by Glycoprotein IIb-IIIa Mediate Platelet Actin Assembly and Filopodial Extension Induced by Phorbol 12-Myristate 13-Acetate. Journal of Biological Chemistry, 1996, 271, 32986-32993.	3.4	113
51	AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nature Cell Biology, 2019, 21, 226-237.	10.3	109
52	Tyrosine Phosphorylation of Protein Kinase D in the Pleckstrin Homology Domain Leads to Activation. Journal of Biological Chemistry, 2003, 278, 17969-17976.	3.4	107
53	Activation Loop Phosphorylation Controls Protein Kinase D-Dependent Activation of Nuclear Factor κB. Molecular Pharmacology, 2004, 66, 870-879.	2.3	102
54	Phosphoinositide 3-Kinase Binds Constitutively to $\hat{l}\pm \hat{l}^2$ -Tubulin and Binds to \hat{l}^3 -Tubulin in Response to Insulin. Journal of Biological Chemistry, 1995, 270, 25985-25991.	3.4	101

#	Article	IF	CITATIONS
55	Nonessential amino acid metabolism in breast cancer. Advances in Biological Regulation, 2016, 62, 11-17.	2.3	96
56	Aspirin Suppresses Growth in PI3K-Mutant Breast Cancer by Activating AMPK and Inhibiting mTORC1 Signaling. Cancer Research, 2017, 77, 790-801.	0.9	96
57	The Carboxyl Terminus of Protein Kinase C Provides a Switch to Regulate Its Interaction with the Phosphoinositide-dependent Kinase, PDK-1. Journal of Biological Chemistry, 2001, 276, 19588-19596.	3.4	93
58	Calcium-dependent Regulation of Protein Kinase D Revealed by a Genetically Encoded Kinase Activity Reporter. Journal of Biological Chemistry, 2007, 282, 6733-6742.	3.4	93
59	Association of Protein Kinase $\hat{C^{1/4}}$ with Type II Phosphatidylinositol 4-Kinase and Type I Phosphatidylinositol-4-phosphate 5-Kinase. Journal of Biological Chemistry, 1998, 273, 23126-23133.	3.4	91
60	The phosphoinositide 3-kinase pathway and therapy resistance in cancer. F1000prime Reports, 2015, 7, 13.	5.9	91
61	Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt. Molecular Cell, 2016, 62, 929-942.	9.7	87
62	Mechanisms of Cold-induced Platelet Actin Assembly. Journal of Biological Chemistry, 2001, 276, 24751-24759.	3.4	85
63	Rictor Forms a Complex with Cullin-1 to Promote SGK1 Ubiquitination and Destruction. Molecular Cell, 2010, 39, 797-808.	9.7	84
64	Discovery of an AKT Degrader with Prolonged Inhibition of Downstream Signaling. Cell Chemical Biology, 2020, 27, 66-73.e7.	5.2	84
65	Akt isoform-specific signaling in breast cancer. Cell Adhesion and Migration, 2011, 5, 211-214.	2.7	79
66	NFAT promotes carcinoma invasive migration through glypican-6. Biochemical Journal, 2011, 440, 157-166.	3.7	78
67	PTEN-Deficient Tumors Depend on AKT2 for Maintenance and Survival. Cancer Discovery, 2014, 4, 942-955.	9.4	75
68	The Lipid Products of Phosphoinositide 3-Kinase Contribute to Regulation of Cholangiocyte ATP and Chloride Transport. Journal of Biological Chemistry, 1999, 274, 30979-30986.	3.4	74
69	Carbachol, Substance P, and Phorbol Ester Promote the Tyrosine Phosphorylation of Protein Kinase Cδ in Salivary Gland Epithelial Cells. Journal of Biological Chemistry, 1995, 270, 13490-13495.	3.4	73
70	Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Science Signaling, 2017, 10 , .	3.6	73
71	Kinase and neurotransmitters. Nature, 1990, 344, 594-594.	27.8	72
72	Phosphorylation of the Platelet p47 Phosphoprotein Is Mediated by the Lipid Products of Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 1995, 270, 29525-29531.	3.4	70

#	Article	IF	Citations
73	Phosphatidylinositol 3-kinase is recruited to a specific site in the activated IL-1 receptor I. FEBS Letters, 1998, 438, 49-54.	2.8	68
74	Akt/Protein Kinase B and Glycogen Synthase Kinase- $3\hat{l}^2$ Signaling Pathway Regulates Cell Migration through the NFAT1 Transcription Factor. Molecular Cancer Research, 2009, 7, 425-432.	3.4	65
75	Signalling specificity in the Akt pathway in breast cancer. Biochemical Society Transactions, 2014, 42, 1349-1355.	3.4	64
76	Identifying and Targeting Sporadic Oncogenic Genetic Aberrations in Mouse Models of Triple-Negative Breast Cancer. Cancer Discovery, 2018, 8, 354-369.	9.4	62
77	Achieving specificity in Akt signaling in cancer. Advances in Biological Regulation, 2012, 52, 78-87.	2.3	59
78	NFAT1 promotes intratumoral neutrophil infiltration by regulating IL8 expression in breast cancer. Molecular Oncology, 2015, 9, 1140-1154.	4.6	59
79	Secreted and Membrane-Bound Isoforms of Protease ADAM9 Have Opposing Effects on Breast Cancer Cell Migration. Cancer Research, 2010, 70, 8187-8198.	0.9	56
80	Phosphorylation of the Par-1 polarity kinase by protein kinase D regulates 14-3-3 binding and membrane association. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18378-18383.	7.1	53
81	NF-κB Signaling: An ALternate Pathway for Oxidate Stress Responses. Cell Cycle, 2003, 2, 9-10.	2.6	52
82	PKD Controls $\hat{l}\pm v\hat{l}^2$ 3 Integrin Recycling and Tumor Cell Invasive Migration through Its Substrate Rabaptin-5. Developmental Cell, 2012, 23, 560-572.	7.0	52
83	Cross-talk between the CK2 and AKT signaling pathways in cancer. Advances in Biological Regulation, 2017, 64, 1-8.	2.3	51
84	LINC00520 is induced by Src, STAT3, and PI3K and plays a functional role in breast cancer. Oncotarget, 2016, 7, 81981-81994.	1.8	48
85	The Adherens Junction Protein Afadin Is an AKT Substrate that Regulates Breast Cancer Cell Migration. Molecular Cancer Research, 2014, 12, 464-476.	3.4	44
86	The SCF $\langle \sup \rangle \hat{l}^2$ -TRCP $\langle \sup \rangle$ E3 ubiquitin ligase complex targets Lipin1 for ubiquitination and degradation to promote hepatic lipogenesis. Science Signaling, 2017, 10, .	3.6	44
87	Pentraxin-3 is a PI3K signaling target that promotes stem cell–like traits in basal-like breast cancers. Science Signaling, 2017, 10, .	3.6	43
88	The biology and biochemistry of diacylglycerol signalling. EMBO Reports, 2005, 6, 310-314.	4.5	41
89	Skp2-dependent reactivation of AKT drives resistance to PI3K inhibitors. Science Signaling, 2018, 11, .	3.6	41
90	MERIT40 Is an Akt Substrate that Promotes Resolution of DNA Damage Induced by Chemotherapy. Cell Reports, 2015, 11, 1358-1366.	6.4	40

#	Article	IF	Citations
91	RhoB Differentially Controls Akt Function in Tumor Cells and Stromal Endothelial Cells during Breast Tumorigenesis. Cancer Research, 2013, 73, 50-61.	0.9	38
92	Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy. Journal of Biological Chemistry, 2020, 295, 6263-6277.	3.4	38
93	PDGF initiates two distinct phases of protein kinase C activity that make unequal contributions to the GO to S transition. Current Biology, 2000, 10, 261-267.	3.9	36
94	The INPP4B Tumor Suppressor Modulates EGFR Trafficking and Promotes Triple-Negative Breast Cancer. Cancer Discovery, 2020, 10, 1226-1239.	9.4	32
95	Akt2 regulates expression of the actinâ€bundling protein palladin. FEBS Letters, 2010, 584, 4769-4774.	2.8	31
96	Antagonists of Calcium Fluxes and Calmodulin Block Activation of the p21-Activated Protein Kinases in Neutrophils. Journal of Immunology, 2001, 166, 2643-2650.	0.8	25
97	Stimulation of an Insulin Receptor Activates and Downâ∈Regulates the Ca ²⁺ â∈Independent Protein Kinase C, Apl II, Through a Wortmanninâ∈Sensitive Signaling Pathway in <i>Aplysia</i> Iournal of Neurochemistry, 1996, 67, 220-228.	3.9	23
98	Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis. Oncotarget, 2016, 7, 17301-17313.	1.8	22
99	FGFR-inhibitor-mediated dismissal of SWI/SNF complexes from YAP-dependent enhancers induces adaptive therapeutic resistance. Nature Cell Biology, 2021, 23, 1187-1198.	10.3	21
100	mTOR and Akt Signaling in Cancer: SGK Cycles In. Molecular Cell, 2008, 31, 6-8.	9.7	20
101	Effect of Overexpression of Constitutively Active PKCα on Rat Lacrimal Gland Protein Secretion., 2004, 45, 3974.		18
102	Phosphoinositide 3-Kinasesâ€"A Historical Perspective. Sub-Cellular Biochemistry, 2012, 58, 95-110.	2.4	18
103	The role of specific isoforms of 14-3-3 protein in regulating protein kinase activity in the brain. Biochemical Society Transactions, 1992, 20, 607-611.	3.4	17
104	Akt signaling: a damaging interaction makes good. Trends in Biochemical Sciences, 2008, 33, 356-359.	7.5	16
105	Akt-ing Up on SRPK1: Oncogene or Tumor Suppressor?. Molecular Cell, 2014, 54, 329-330.	9.7	14
106	Metabolic pathway alterations in microvascular endothelial cells in response to hypoxia. PLoS ONE, 2020, 15, e0232072.	2.5	14
107	Positive correlation between transcriptomic stemness and PI3K/AKT/mTOR signaling scores in breast cancer, and a counterintuitive relationship with PIK3CA genotype. PLoS Genetics, 2021, 17, e1009876.	3.5	14
108	TTC3 Ubiquitination Terminates Akt-ivation. Developmental Cell, 2009, 17, 752-754.	7.0	13

#	Article	IF	CITATIONS
109	Platelet protein phosphorylation and protein kinase C activation by phorbol esters with different biological activity and a novel synergistic response with Ca2+ ionophore. FEBS Journal, 1990, 188, 431-437.	0.2	12
110	Phosphorylation of the Activation Loop of \hat{l}^3 p21-Activated Kinase (\hat{l}^3 -Pak) and Related Kinases (MSTs) in Normal and Stressed Neutrophils. Journal of Immunology, 2001, 166, 6349-6357.	0.8	12
111	Effect of Overexpression of Protein Kinase Cl̂± on Rat Lacrimal Gland Protein Secretion. Advances in Experimental Medicine and Biology, 2002, 506, 237-241.	1.6	12
112	PIPPing on AKT1: How Many Phosphatases Does It Take to Turn off PI3K?. Cancer Cell, 2015, 28, 143-145.	16.8	9
113	PI 3-Kinase Signaling: AKTing up inside the Cell. Molecular Cell, 2018, 71, 875-876.	9.7	8
114	PDK-1 and Protein Kinase C Phosphorylation. , 2003, 233, 171-190.		7
115	WWP1 inactivation enhances efficacy of PI3K inhibitors while suppressing their toxicities in breast cancer models. Journal of Clinical Investigation, 2021, 131, .	8.2	7
116	Double trouble for cancer gene. Science, 2019, 366, 685-686.	12.6	4
117	Lactate Lights up PI3K Inhibitor Resistance in Breast Cancer. Cancer Cell, 2020, 38, 441-443.	16.8	4
118	Genetic Manipulation of Protein Kinase C In Vivo., 2003, 233, 475-490.		3
119	The KRAS-G12D mutation induces Metabolic Vulnerability in B-cell Acute Lymphoblastic Leukemia. IScience, 2022, 25, 103881.	4.1	2
120	Chapter 12 Cellular regulation of protein kinase C. Cell and Molecular Response To Stress, 2001, 2, 163-173.	0.4	1
121	Identifying Protein Kinase C Substrates: An Introduction. , 2003, 233, 247-252.		1
122	Akt Blocks Breast Cancer Cell Motility and Invasion through the Transcription Factor NFAT. Molecular Cell, 2006, 22, 145.	9.7	0
123	Protein Kinase C. , 2007, , 746-752.		0
124	Abstract 1400: SWI/SNF chromatin remodeling complex regulation of YAP-dependent enhancers drives therapeutic resistance in triple-negative breast cancer., 2021,,.		0
125	A geneticallyâ€encoded reporter reveals novel regulation of protein kinase D by calcium. FASEB Journal, 2006, 20, .	0.5	0
126	Regulation of Carcinoma Invasion by ADAMs and MMPs. FASEB Journal, 2009, 23, 94.2.	0.5	0

ALEX TOKER

#	Article	IF	CITATIONS
127	ADAM9 Isoforms in Breast Cancer Cell Migration. FASEB Journal, 2009, 23, 523.1.	0.5	0
128	Functions of the P21-Activated Protein Kinases (Paks) in Neutrophils and their Regulation by Complex Lipids. Advances in Experimental Medicine and Biology, 1999, 469, 385-390.	1.6	0
129	Abstract P4-01-04: FGFR inhibitor mediated dismissal of SWI/SNF complexes from YAP-dependent enhancers induces therapeutic resistance in triple negative breast cancer. Cancer Research, 2022, 82, P4-01-04-P4-01-04.	0.9	0
130	Can Improved Use of Biomarkers Alter the Fate of PI3K Pathway Inhibitors in the Clinic?. Cancer Research, 2021, 81, 6083-6086.	0.9	0
131	Metabolic pathway alterations in microvascular endothelial cells in response to hypoxia., 2020, 15, e0232072.		0
132	Metabolic pathway alterations in microvascular endothelial cells in response to hypoxia., 2020, 15, e0232072.		0
133	Metabolic pathway alterations in microvascular endothelial cells in response to hypoxia., 2020, 15, e0232072.		0
134	Metabolic pathway alterations in microvascular endothelial cells in response to hypoxia., 2020, 15, e0232072.		0
135	PI 3â€Kinase signaling: A journey in three AKTs. FASEB Journal, 2022, 36, .	0.5	0