Yonghong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7526005/publications.pdf

Version: 2024-02-01

47 papers

8,851 citations

36 h-index 214800 47 g-index

64 all docs

64 docs citations

times ranked

64

7228 citing authors

#	Article	IF	CITATIONS
1	Molecular basis underlying rice tiller angle: Current progress and future perspectives. Molecular Plant, 2022, 15, 125-137.	8.3	29
2	<scp>KNOX II</scp> transcription factor <scp>HOS59</scp> functions in regulating rice grain size. Plant Journal, 2022, 110, 863-880.	5.7	11
3	OsHYPK-mediated protein N-terminal acetylation coordinates plant development and abiotic stress responses in rice. Molecular Plant, 2022, 15, 740-754.	8.3	9
4	Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nature Biotechnology, 2022, 40, 1403-1411.	17.5	110
5	Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnology Journal, 2021, 19, 335-350.	8.3	80
6	A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184, 1156-1170.e14.	28.9	259
7	<i>LAZY2</i> controls rice tiller angle through regulating starch biosynthesis in gravityâ€sensing cells. New Phytologist, 2021, 231, 1073-1087.	7.3	27
8	Enhancing rice grain production by manipulating the naturally evolved cis-regulatory element-containing inverted repeat sequence of OsREM20. Molecular Plant, 2021, 14, 997-1011.	8.3	19
9	Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590, 600-605.	27.8	204
10	ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. Molecular Plant, 2020, 13, 1784-1801.	8.3	70
11	Karrikin Signaling Acts Parallel to and Additively with Strigolactone Signaling to Regulate Rice Mesocotyl Elongation in Darkness. Plant Cell, 2020, 32, 2780-2805.	6.6	65
12	Strigolactone and Karrikin Signaling Pathways Elicit Ubiquitination and Proteolysis of SMXL2 to Regulate Hypocotyl Elongation in Arabidopsis. Plant Cell, 2020, 32, 2251-2270.	6.6	103
13	OsBRXL4 Regulates Shoot Gravitropism and Rice Tiller Angle through Affecting LAZY1 Nuclear Localization. Molecular Plant, 2019, 12, 1143-1156.	8.3	71
14	Genomic evidence of human selection on Vavilovian mimicry. Nature Ecology and Evolution, 2019, 3, 1474-1482.	7.8	38
15	Tiller Bud Formation Regulators MOC1 and MOC3 Cooperatively Promote Tiller Bud Outgrowth by Activating FON1 Expression in Rice. Molecular Plant, 2019, 12, 1090-1102.	8.3	93
16	Molecular mechanisms underlying plant architecture and its environmental plasticity in rice. Molecular Breeding, $2019, 39, 1.$	2.1	15
17	A Core Regulatory Pathway Controlling Rice Tiller Angle Mediated by the <i>LAZY1</i> -Dependent Asymmetric Distribution of Auxin. Plant Cell, 2018, 30, 1461-1475.	6.6	114
18	Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis. Journal of Plant Physiology, 2017, 214, 1-6.	3.5	36

#	Article	IF	Citations
19	A D53 repression motif induces oligomerization of TOPLESS corepressors and promotes assembly of a corepressor-nucleosome complex. Science Advances, 2017, 3, e1601217.	10.3	64
20	Tissue-Specific Ubiquitination by IPA1 INTERACTING PROTEIN1 Modulates IPA1 Protein Levels to Regulate Plant Architecture in Rice. Plant Cell, 2017, 29, 697-707.	6.6	102
21	Rational design of high-yield and superior-quality rice. Nature Plants, 2017, 3, 17031.	9.3	293
22	IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Research, 2017, 27, 1128-1141.	12.0	229
23	Mitogen-Activated Protein Kinase Cascade MKK7-MPK6 Plays Important Roles in Plant Development and Regulates Shoot Branching by Phosphorylating PIN1 in Arabidopsis. PLoS Biology, 2016, 14, e1002550.	5.6	114
24	Strigolactone Signaling in Arabidopsis Regulates Shoot Development by Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation. Plant Cell, 2015, 27, 3128-3142.	6.6	310
25	MONOCULM 3, an Ortholog of WUSCHEL in Rice, Is Required for Tiller Bud Formation. Journal of Genetics and Genomics, 2015, 42, 71-78.	3.9	121
26	Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 2015, 47, 944-948.	21.4	485
27	Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4821-4826.	7.1	169
28	Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Research, 2015, 25, 621-633.	12.0	80
29	Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Research, 2015, 25, 1219-1236.	12.0	152
30	Natural variation of rice strigolactone biosynthesis is associated with the deletion of two <i>MAX1</i> orthologs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2379-2384.	7.1	138
31	Action of Strigolactones in Plants. The Enzymes, 2014, 35, 57-84.	1.7	10
32	Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11199-11204.	7.1	121
33	Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture. Plant Cell, 2013, 25, 3743-3759.	6.6	588
34	DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504, 401-405.	27.8	660
35	Crystal structures of two phytohormone signal-transducing $\hat{l}\pm/\hat{l}^2$ hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Research, 2013, 23, 436-439.	12.0	222
36	Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nature Communications, 2012, 3, 750.	12.8	168

#	Article	IF	Citations
37	Branching in rice. Current Opinion in Plant Biology, 2011, 14, 94-99.	7.1	200
38	Development of gene-tagged molecular markers for starch synthesis-related genes in rice. Science Bulletin, 2010, 55, 3768-3777.	1.7	20
39	Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 2010, 42, 541-544.	21.4	1,240
40	Advances in the regulation and crosstalks of phytohormones. Science Bulletin, 2009, 54, 4069-4082.	1.7	10
41	DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth Â. Plant Cell, 2009, 21, 1512-1525.	6.6	549
42	Molecular Basis of Plant Architecture. Annual Review of Plant Biology, 2008, 59, 253-279.	18.7	512
43	LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Research, 2007, 17, 402-410.	12.0	288
44	<i>TAC1</i> , a major quantitative trait locus controlling tiller angle in rice. Plant Journal, 2007, 52, 891-898.	5.7	281
45	Genes controlling plant architecture. Current Opinion in Biotechnology, 2006, 17, 123-129.	6.6	124
46	The Plant Architecture of Rice (Oryza sativa). Plant Molecular Biology, 2005, 59, 75-84.	3.9	139
47	Towards molecular breeding and improvement of rice in China. Trends in Plant Science, 2005, 10, 610-614.	8.8	108