
Giuseppe Legname

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7523752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic strategies for identifying small molecules against prion diseases. Cell and Tissue Research, 2023, 392, 337-347.	2.9	8
2	Prion receptors, prion internalization, intra- and inter-cellular transport. Progress in Molecular Biology and Translational Science, 2023, , 15-41.	1.7	1
3	Expression pattern of perilipins in human brain during aging and in Alzheimer's disease. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	17
4	The E3 Ubiquitin Ligase TRAF6 Interacts with the Cellular Prion Protein and Modulates Its Solubility and Recruitment to Cytoplasmic p62/SQSTM1-Positive Aggresome-Like Structures. Molecular Neurobiology, 2022, , 1.	4.0	4
5	PMCA-Based Detection of Prions in the Olfactory Mucosa of Patients With Sporadic Creutzfeldt–Jakob Disease. Frontiers in Aging Neuroscience, 2022, 14, 848991.	3.4	4
6	The Alpha-Synuclein RT-QuIC Products Generated by the Olfactory Mucosa of Patients with Parkinson's Disease and Multiple System Atrophy Induce Inflammatory Responses in SH-SY5Y Cells. Cells, 2022, 11, 87.	4.1	5
7	Serpin Signatures in Prion and Alzheimer's Diseases. Molecular Neurobiology, 2022, 59, 3778-3799.	4.0	18
8	Innovative Non-PrP-Targeted Drug Strategy Designed to Enhance Prion Clearance. Journal of Medicinal Chemistry, 2022, 65, 8998-9010.	6.4	5
9	NMDA Receptor and L-Type Calcium Channel Modulate Prion Formation. Cellular and Molecular Neurobiology, 2021, 41, 191-198.	3.3	3
10	Site-specific analysis of N-glycans from different sheep prion strains. PLoS Pathogens, 2021, 17, e1009232.	4.7	8
11	PMCA-generated prions from the olfactory mucosa of patients with Fatal Familial Insomnia cause prion disease in mice. ELife, 2021, 10, .	6.0	4
12	Profiling Dopamine-Induced Oxidized Proteoforms of \hat{I}^2 -synuclein by Top-Down Mass Spectrometry. Antioxidants, 2021, 10, 893.	5.1	1
13	Tackling prion diseases: a review of the patent landscape. Expert Opinion on Therapeutic Patents, 2021, 31, 1097-1115.	5.0	10
14	Astrocytesâ€derived extracellular vesicles in motion at the neuron surface: Involvement of the prion protein. Journal of Extracellular Vesicles, 2021, 10, e12114.	12.2	19
15	The Cellular Prion Protein Increases the Uptake and Toxicity of TDP-43 Fibrils. Viruses, 2021, 13, 1625.	3.3	13
16	Discrimination of MSA-P and MSA-C by RT-QuIC analysis of olfactory mucosa: the first assessment of assay reproducibility between two specialized laboratories. Molecular Neurodegeneration, 2021, 16, 82.	10.8	28
17	Brain aging: A <i>lanus</i> â€faced player between health and neurodegeneration. Journal of Neuroscience Research, 2020, 98, 299-311.	2.9	35
18	Deciphering Copper Coordination in the Mammalian Prion Protein Amyloidogenic Domain. Biophysical Journal, 2020, 118, 676-687.	0.5	11

#	Article	IF	CITATIONS
19	Cell-free amplification of prions: Where do we stand?. Progress in Molecular Biology and Translational Science, 2020, 175, 325-358.	1.7	7
20	TDP-43 real-time quaking induced conversion reaction optimization and detection of seeding activity in CSF of amyotrophic lateral sclerosis and frontotemporal dementia patients. Brain Communications, 2020, 2, fcaa142.	3.3	55
21	The role of the cellular prion protein in the uptake and toxic signaling of pathological neurodegenerative aggregates. Progress in Molecular Biology and Translational Science, 2020, 175, 297-323.	1.7	5
22	The uptake of tau amyloid fibrils is facilitated by the cellular prion protein and hampers prion propagation in cultured cells. Journal of Neurochemistry, 2020, 155, 577-591.	3.9	32
23	Dynamic molecular exchange and conformational transitions of alpha-synuclein at the nano-bio interface. International Journal of Biological Macromolecules, 2020, 154, 206-216.	7.5	12
24	Novel regulators of PrP ^C expression as potential therapeutic targets in prion diseases. Expert Opinion on Therapeutic Targets, 2020, 24, 759-776.	3.4	10
25	Iron-mediated interaction of alpha synuclein with lipid raft model membranes. Nanoscale, 2020, 12, 7631-7640.	5.6	16
26	In silico/inÂvitro screening and hit evaluation identified new phenothiazine anti-prion derivatives. European Journal of Medicinal Chemistry, 2020, 196, 112295.	5.5	7
27	How would defining Parkinson's as a prion disease impact the search of a cure?. Expert Review of Neurotherapeutics, 2020, 20, 417-420.	2.8	Ο
28	On the role of the cellular prion protein in the uptake and signaling of pathological aggregates in neurodegenerative diseases. Prion, 2020, 14, 257-270.	1.8	15
29	Replacement of Residue H95 with Charged Amino Acids in the Prion Protein Decreases Prion Conversion Propensity. IFMBE Proceedings, 2020, , 255-259.	0.3	Ο
30	Chronic α-Synuclein Accumulation in Rat Hippocampus Induces Lewy Bodies Formation and Specific Cognitive Impairments. ENeuro, 2020, 7, ENEURO.0009-20.2020.	1.9	11
31	Synthetic Prion Selection and Adaptation. Molecular Neurobiology, 2019, 56, 2978-2989.	4.0	7
32	Efficient RT-QuIC seeding activity for α-synuclein in olfactory mucosa samples of patients with Parkinson's disease and multiple system atrophy. Translational Neurodegeneration, 2019, 8, 24.	8.0	106
33	Structural Consequences of Copper Binding to the Prion Protein. Cells, 2019, 8, 770.	4.1	39
34	Novel screening approaches for human prion diseases drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 983-993.	5.0	7
35	Depicting Conformational Ensembles of α-Synuclein by Single Molecule Force Spectroscopy and Native Mass Spectroscopy. International Journal of Molecular Sciences, 2019, 20, 5181.	4.1	7
36	α‧ynuclein RTâ€QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies. Annals of Clinical and Translational Neurology, 2019, 6, 2120-2126.	3.7	87

#	Article	IF	CITATIONS
37	Prions Strongly Reduce NMDA Receptor S-Nitrosylation Levels at Pre-symptomatic and Terminal Stages of Prion Diseases. Molecular Neurobiology, 2019, 56, 6035-6045.	4.0	13
38	Prion Efficiently Replicates in α-Synuclein Knockout Mice. Molecular Neurobiology, 2019, 56, 7448-7457.	4.0	5
39	Prion and Prion-Like Protein Strains: Deciphering the Molecular Basis of Heterogeneity in Neurodegeneration. Viruses, 2019, 11, 261.	3.3	41
40	Copper Binding Regulates Cellular Prion Protein Function. Molecular Neurobiology, 2019, 56, 6121-6133.	4.0	37
41	Methionine oxidation in α-synuclein inhibits its propensity for ordered secondary structure. Journal of Biological Chemistry, 2019, 294, 5657-5665.	3.4	25
42	Structural evidence for the critical role of the prion protein hydrophobic region in forming an infectious prion. PLoS Pathogens, 2019, 15, e1008139.	4.7	22
43	Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids. Scientific Reports, 2019, 9, 18595.	3.3	11
44	Unique Structural Features of Mule Deer Prion Protein Provide Insights into Chronic Wasting Disease. ACS Omega, 2019, 4, 19913-19924.	3.5	5
45	Clinical and neuropathological phenotype associated with the novel V189I mutation in the prion protein gene. Acta Neuropathologica Communications, 2019, 7, 1.	5.2	68
46	Effects of peptidyl-prolyl isomerase 1 depletion in animal models of prion diseases. Prion, 2018, 12, 127-137.	1.8	3
47	Conformational properties of intrinsically disordered proteins bound to the surface of silica nanoparticles. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1556-1564.	2.4	29
48	The role of the prion protein in the internalization of α-synuclein amyloids. Prion, 2018, 12, 23-27.	1.8	29
49	Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathologica, 2018, 135, 529-550.	7.7	196
50	Tau-Centric Multitarget Approach for Alzheimer's Disease: Development of First-in-Class Dual Glycogen Synthase Kinase 3β and Tau-Aggregation Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 7640-7656.	6.4	81
51	Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases. Frontiers in Neuroscience, 2018, 12, 8.	2.8	26
52	Copper Binding Regulates Cellular Prion Protein Function. FASEB Journal, 2018, 32, 805.4.	0.5	1
53	Detection of prion seeding activity in the olfactory mucosa of patients with Fatal Familial Insomnia. Scientific Reports, 2017, 7, 46269.	3.3	41
54	Synthetic Mammalian Prions. Neuromethods, 2017, , 209-228.	0.3	1

#	Article	IF	CITATIONS
55	Preface. Progress in Molecular Biology and Translational Science, 2017, 150, xvii-xix.	1.7	0
56	α-Synuclein Amyloids Hijack Prion Protein to Gain Cell Entry, Facilitate Cell-to-Cell Spreading and Block Prion Replication. Scientific Reports, 2017, 7, 10050.	3.3	105
57	The Prion Concept and Synthetic Prions. Progress in Molecular Biology and Translational Science, 2017, 150, 147-156.	1.7	9
58	Differential overexpression of SERPINA3 in human prion diseases. Scientific Reports, 2017, 7, 15637.	3.3	58
59	Identification of novel fluorescent probes preventing PrP Sc replication in prion diseases. European Journal of Medicinal Chemistry, 2017, 127, 859-873.	5.5	39
60	Elucidating the function of the prion protein. PLoS Pathogens, 2017, 13, e1006458.	4.7	38
61	The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein. PLoS ONE, 2017, 12, e0188308.	2.5	10
62	A new approach to follow a single extracellular vesicle—cell interaction using optical tweezers. BioTechniques, 2016, 60, 35.	1.8	54
63	In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution. Frontiers in Neuroscience, 2016, 10, 437.	2.8	14
64	The Priority position paper: Protecting Europe's food chain from prions. Prion, 2016, 10, 165-181.	1.8	13
65	Characterization of prion protein function by focal neurite stimulation. Journal of Cell Science, 2016, 129, 3878-3891.	2.0	35
66	Opposite Structural Effects of Epigallocatechin-3-gallate and Dopamine Binding to α-Synuclein. Analytical Chemistry, 2016, 88, 8468-8475.	6.5	61
67	The N Terminus of the Prion Protein Mediates Functional Interactions with the Neuronal Cell Adhesion Molecule (NCAM) Fibronectin Domain. Journal of Biological Chemistry, 2016, 291, 21857-21868.	3.4	31
68	Prions. , 2016, , 839-844.		0
69	Whole Blood Gene Expression Profiling in Preclinical and Clinical Cattle Infected with Atypical Bovine Spongiform Encephalopathy. PLoS ONE, 2016, 11, e0153425.	2.5	10
70	The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion. Scientific Reports, 2015, 5, 15253.	3.3	39
71	Effect of extracellular vesicles derived from distinct brain cells on Aβ toxicity and assembly: focus on Microglia derived vesicles. SpringerPlus, 2015, 4, .	1.2	0
72	New insights into structural determinants of prion protein folding and stability. Prion, 2015, 9, 119-124.	1.8	12

#	Article	IF	CITATIONS
73	Approaches for discovering anti-prion compounds: lessons learned and challenges ahead. Expert Opinion on Drug Discovery, 2015, 10, 389-397.	5.0	25
74	Involvement of PrPC in kainate-induced excitotoxicity in several mouse strains. Scientific Reports, 2015, 5, 11971.	3.3	32
75	Rational approach to an antiprion compound with a multiple mechanism of action. Future Medicinal Chemistry, 2015, 7, 2113-2120.	2.3	9
76	Prion Protein and Copper Cooperatively Protect Neurons by Modulating NMDA Receptor Through S-nitrosylation. Antioxidants and Redox Signaling, 2015, 22, 772-784.	5.4	101
77	Synthetic prions and other human neurodegenerative proteinopathies. Virus Research, 2015, 207, 25-37.	2.2	15
78	Synthetic prions with novel strain-specified properties. PLoS Pathogens, 2015, 11, e1005354.	4.7	24
79	Characterization of four new monoclonal antibodies against the distal N-terminal region of PrP ^c . PeerJ, 2015, 3, e811.	2.0	9
80	Pin1 and neurodegeneration: a new player for prion disorders?. AIMS Molecular Science, 2015, 2, 311-323.	0.5	0
81	Prion protein and aging. Frontiers in Cell and Developmental Biology, 2014, 2, 44.	3.7	29
82	Progress towards structural understanding of infectious sheep PrP-amyloid. Prion, 2014, 8, 344-358.	1.8	11
83	In vitro aggregation assays for the characterization of α-synuclein prion-like properties. Prion, 2014, 8, 19-32.	1.8	66
84	Prion Protein-Specific Antibodies-Development, Modes of Action and Therapeutics Application. Viruses, 2014, 6, 3719-3737.	3.3	15
85	Prion Protein Interaction with Soil Humic Substances: Environmental Implications. PLoS ONE, 2014, 9, e100016.	2.5	16
86	Humic substances interfere with detection of pathogenic prion protein. Soil Biology and Biochemistry, 2014, 68, 309-316.	8.8	6
87	Probing the N-Terminal Î ² -Sheet Conversion in the Crystal Structure of the Human Prion Protein Bound to a Nanobody. Journal of the American Chemical Society, 2014, 136, 937-944.	13.7	97
88	Defined α-synuclein prion-like molecular assemblies spreading in cell culture. BMC Neuroscience, 2014, 15, 69.	1.9	66
89	Structural Determinants in Prion Protein Folding and Stability. Journal of Molecular Biology, 2014, 426, 3796-3810.	4.2	28
90	Microglia convert aggregated amyloid- $\hat{1}^2$ into neurotoxic forms through the shedding of microvesicles. Cell Death and Differentiation, 2014, 21, 582-593.	11.2	219

#	Article	IF	CITATIONS
91	Gene expression profiling of brains from bovine spongiform encephalopathy (BSE)-infected cynomolgus macaques. BMC Genomics, 2014, 15, 434.	2.8	21
92	A Fluorescent Styrylquinoline with Combined Therapeutic and Diagnostic Activities against Alzheimer's and Prion Diseases. ACS Medicinal Chemistry Letters, 2013, 4, 225-229.	2.8	48
93	PrP ^C Controls via Protein Kinase A the Direction of Synaptic Plasticity in the Immature Hippocampus. Journal of Neuroscience, 2013, 33, 2973-2983.	3.6	40
94	Role of Prion Disease-Linked Mutations in the Intrinsically Disordered N-Terminal Domain of the Prion Protein. Journal of Chemical Theory and Computation, 2013, 9, 5158-5167.	5.3	14
95	SAXS structural study of PrPScreveals ~11 nm diameter of basic double intertwined fibers. Prion, 2013, 7, 496-500.	1.8	18
96	Small-Molecule Theranostic Probes: A Promising Future in Neurodegenerative Diseases. International Journal of Cell Biology, 2013, 2013, 1-19.	2.5	34
97	Dominant-negative effects in prion diseases: insights from molecular dynamics simulations on mouse prion protein chimeras. Journal of Biomolecular Structure and Dynamics, 2013, 31, 829-840.	3.5	9
98	Probing Early Misfolding Events in Prion Protein Mutants by NMR Spectroscopy. Molecules, 2013, 18, 9451-9476.	3.8	34
99	Prion Protein Accumulation in Lipid Rafts of Mouse Aging Brain. PLoS ONE, 2013, 8, e74244.	2.5	31
100	Editorial (Thematic Issue: Recent Advances of Biology and Medicinal Chemistry of Prion Protein and) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
101	NMR Structural Studies of Human Cellular Prion Proteins. Current Topics in Medicinal Chemistry, 2013, 13, 2407-2418.	2.1	12
102	Modulation of Prion by Small Molecules: From Monovalent to Bivalent and Multivalent Ligands. Current Topics in Medicinal Chemistry, 2013, 13, 2491-2503.	2.1	11
103	Structural basis for the protective effect of the human prion protein carrying the dominant-negative E219K polymorphism. Biochemical Journal, 2012, 446, 243-251.	3.7	56
104	Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice. Prion, 2012, 6, 383-390.	1.8	25
105	Early structural features in mammalian prion conformation conversion. Prion, 2012, 6, 37-39.	1.8	9
106	The role of Bax and caspase-3 in doppel-induced apoptosis of cerebellar granule cells. Prion, 2012, 6, 309-316.	1.8	19
107	Gene expression profiling and therapeutic interventions in neurodegenerative diseases: a comprehensive study on potentiality and limits. Expert Opinion on Drug Discovery, 2012, 7, 245-259.	5.0	18
108	Structural Rearrangements at Physiological pH: Nuclear Magnetic Resonance Insights from the V210I Human Prion Protein Mutant. Biochemistry, 2012, 51, 7465-7474.	2.5	33

#	Article	IF	CITATIONS
109	Effects of the Pathological Q212P Mutation on Human Prion Protein Non-Octarepeat Copper-Binding Site. Biochemistry, 2012, 51, 6068-6079.	2.5	32
110	Mapping the Prion Protein Distribution in Marsupials: Insights from Comparing Opossum with Mouse CNS. PLoS ONE, 2012, 7, e50370.	2.5	4
111	A novel expression system for production of soluble prion proteins in E. coli. Microbial Cell Factories, 2012, 11, 6.	4.0	22
112	A small chemical library of 2-aminoimidazole derivatives as BACE-1 inhibitors: Structure-based design, synthesis, and biological evaluation. European Journal of Medicinal Chemistry, 2012, 48, 206-213.	5.5	27
113	Structural Studies of Prion Proteins and Prions. , 2012, , 289-317.		7
114	Infrared Microspectroscopy: A Multiple-Screening Platform for Investigating Single-Cell Biochemical Perturbations upon Prion Infection. ACS Chemical Neuroscience, 2011, 2, 160-174.	3.5	16
115	Aged PrP null mice show defective processing of neuregulins in the peripheral nervous system. Molecular and Cellular Neurosciences, 2011, 47, 28-35.	2.2	5
116	Common Structural Traits across Pathogenic Mutants of the Human Prion Protein and Their Implications for Familial Prion Diseases. Journal of Molecular Biology, 2011, 411, 700-712.	4.2	66
117	Toward the Molecular Basis of Inherited Prion Diseases: NMR Structure of the Human Prion Protein with V210I Mutation. Journal of Molecular Biology, 2011, 412, 660-673.	4.2	57
118	Developmental influence of the cellular prion protein on the gene expression profile in mouse hippocampus. Physiological Genomics, 2011, 43, 711-725.	2.3	20
119	Epitope mapping of a PrP(Sc)-specific monoclonal antibody: Identification of a novel C-terminally truncated prion fragment. Molecular Immunology, 2011, 48, 746-750.	2.2	21
120	Compact conformations of $\hat{l}\pm \hat{a} \in s$ ynuclein induced by alcohols and copper. Proteins: Structure, Function and Bioinformatics, 2011, 79, 611-621.	2.6	45
121	Hybrid Lipoic Acid Derivatives to Attack Prion Disease on Multiple Fronts. ChemMedChem, 2011, 6, 601-605.	3.2	11
122	Combining in-situ proteolysis and microseed matrix screening to promote crystallization of PrPc-nanobody complexes. Protein Engineering, Design and Selection, 2011, 24, 737-741.	2.1	17
123	A system-level approach for deciphering the transcriptional response to prion infection. Bioinformatics, 2011, 27, 3407-3414.	4.1	10
124	Spontaneous generation of anchorless prions in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21223-21228.	7.1	68
125	Discovery of a Class of Diketopiperazines as Antiprion Compounds. ChemMedChem, 2010, 5, 1324-1334.	3.2	39
126	Neurodevelopmental expression and localization of the cellular prion protein in the central nervous system of the mouse. Journal of Comparative Neurology, 2010, 518, 1879-1891.	1.6	27

#	Article	IF	CITATIONS
127	Synthesis and evaluation of a library of 2,5-bisdiamino-benzoquinone derivatives as probes to modulate protein–protein interactions in prions. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1866-1868.	2.2	19
128	Crystallization and preliminary X-ray diffraction analysis of a specific VHH domain against mouse prion protein. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1644-1646.	0.7	8
129	Aberrant ERK 1/2 complex activation and localization in scrapie-infected GT1-1 cells. Molecular Neurodegeneration, 2010, 5, 29.	10.8	17
130	Structural facets of diseaseâ€linked human prion protein mutants: A molecular dynamic study. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3270-3280.	2.6	46
131	Modulation of Alpha-Synuclein Aggregation by Dopamine Analogs. PLoS ONE, 2010, 5, e9234.	2.5	52
132	NMR Structure of the Human Prion Protein with the Pathological Q212P Mutation Reveals Unique Structural Features. PLoS ONE, 2010, 5, e11715.	2.5	71
133	Protease-Sensitive Synthetic Prions. PLoS Pathogens, 2010, 6, e1000736.	4.7	148
134	Oriented Prion Protein Immobilization at Nanostructured Interfaces. Biophysical Journal, 2010, 98, 654a.	0.5	0
135	Gene expression profiling to identify druggable targets in prion diseases. Expert Opinion on Drug Discovery, 2010, 5, 177-202.	5.0	7
136	Parallel Synthesis, Evaluation, and Preliminary Structureâ^'Activity Relationship of 2,5-Diamino-1,4-benzoquinones as a Novel Class of Bivalent Anti-Prion Compound. Journal of Medicinal Chemistry, 2010, 53, 8197-8201.	6.4	32
137	Oriented Immobilization of Prion Protein DemonstratedviaPrecise Interfacial Nanostructure Measurements. ACS Nano, 2010, 4, 6607-6616.	14.6	21
138	Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale, 2010, 2, 2826.	5.6	108
139	A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles. Nanoscale, 2010, 2, 2724.	5.6	30
140	De novo prions. F1000 Biology Reports, 2010, 2, .	4.0	1
141	De novo mammalian prion synthesis. Prion, 2009, 3, 213-219.	1.8	12
142	Investigating the Conformational Stability of Prion Strains through a Kinetic Replication Model. PLoS Computational Biology, 2009, 5, e1000420.	3.2	15
143	Continuous Quinacrine Treatment Results in the Formation of Drug-Resistant Prions. PLoS Pathogens, 2009, 5, e1000673.	4.7	135
144	Design and construction of diverse mammalian prion strains. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20417-20422.	7.1	191

#	Article	IF	CITATIONS
145	Prion Proteins with Pathogenic and Protective Mutations Show Similar Structure and Dynamics. Biochemistry, 2009, 48, 8120-8128.	2.5	53
146	Structural Insights into Alternate Aggregated Prion Protein Forms. Journal of Molecular Biology, 2009, 393, 1033-1042.	4.2	17
147	Docking Ligands on Protein Surfaces: The Case Study of Prion Protein. Journal of Chemical Theory and Computation, 2009, 5, 2565-2573.	5.3	34
148	Development of antibody fragments for immunotherapy of prion diseases. Biochemical Journal, 2009, 418, 507-515.	3.7	37
149	Prion Protein Paralog Doppel Protein Interacts with Alpha-2-Macroglobulin: A Plausible Mechanism for Doppel-Mediated Neurodegeneration. PLoS ONE, 2009, 4, e5968.	2.5	7
150	Correction for Colby <i>et al.</i> , Prion detection by an amyloid seeding assay. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1774-1774.	7.1	0
151	Prion detection by an amyloid seeding assay. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20914-20919.	7.1	205
152	Thioaptamer Interactions with Prion Proteins: Sequence-specific and Non-specific Binding Sites. Journal of Molecular Biology, 2007, 369, 1001-1014.	4.2	54
153	Structureâ^'Activity Relationship Study of Prion Inhibition by 2-Aminopyridine-3,5-dicarbonitrile-Based Compounds:  Parallel Synthesis, Bioactivity, and in Vitro Pharmacokinetics. Journal of Medicinal Chemistry, 2007, 50, 65-73.	6.4	112
154	Pathogenesis of Prion Diseases. , 2007, , 125-146.		1
155	Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19105-19110.	7.1	194
156	Human prions and plasma lipoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11312-11317.	7.1	39
157	QUINACRINE IS MAINLY METABOLIZED TO MONO-DESETHYL QUINACRINE BY CYP3A4/5 AND ITS BRAIN ACCUMULATION IS LIMITED BY P-GLYCOPROTEIN. Drug Metabolism and Disposition, 2006, 34, 1136-1144.	3.3	46
158	Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. Journal of Neurochemistry, 2005, 95, 1373-1386.	3.9	155
159	Strain-specified characteristics of mouse synthetic prions. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2168-2173.	7.1	178
160	Immunoglobulins in Urine of Hamsters with Scrapie. Journal of Biological Chemistry, 2004, 279, 48817-48820.	3.4	40
161	The peculiar nature of unfolding of the human prion protein. Protein Science, 2004, 13, 586-595.	7.6	72

162 Synthetic Mammalian Prions. Science, 2004, 305, 673-676.

12.6 956

#	Article	IF	CITATIONS
163	Pharmacokinetics of quinacrine in the treatment of prion disease. BMC Infectious Diseases, 2004, 4, 53.	2.9	35
164	Oxidation of methionine residues in the prion protein by hydrogen peroxide. Archives of Biochemistry and Biophysics, 2004, 432, 188-195.	3.0	82
165	The influence of the srcâ€family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunological Reviews, 2003, 191, 107-118.	6.0	178
166	Differential Inhibition of Prion Propagation by Enantiomers of Quinacrine. Laboratory Investigation, 2003, 83, 837-843.	3.7	50
167	Copper Coordination in the Full-Length, Recombinant Prion Proteinâ€. Biochemistry, 2003, 42, 6794-6803.	2.5	278
168	Conformation of PrPC on the Cell Surface as Probed by Antibodies. Journal of Molecular Biology, 2003, 326, 475-483.	4.2	36
169	Cooperative Binding of Dominant-Negative Prion Protein to Kringle Domains. Journal of Molecular Biology, 2003, 329, 323-333.	4.2	42
170	Cytosolic Prion Protein in Neurons. Journal of Neuroscience, 2003, 23, 7183-7193.	3.6	190
171	Prion and doppel proteins bind to granule cells of the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16285-16290.	7.1	24
172	Prions in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3812-3817.	7.1	149
173	Pathway Complexity of Prion Protein Assembly into Amyloid. Journal of Biological Chemistry, 2002, 277, 21140-21148.	3.4	393
174	Locally Disordered Conformer of the Hamster Prion Protein: A Crucial Intermediate to PrPSc?â€. Biochemistry, 2002, 41, 12277-12283.	2.5	154
175	A Change in the Conformation of Prions Accompanies the Emergence of a New Prion Strain. Neuron, 2002, 34, 921-932.	8.1	214
176	Measuring prions causing bovine spongiform encephalopathy or chronic wasting disease by immunoassays and transgenic mice. Nature Biotechnology, 2002, 20, 1147-1150.	17.5	215
177	Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. Journal of Molecular Biology, 2001, 314, 1209-1225.	4.2	328
178	Immobilized prion protein undergoes spontaneous rearrangement to a conformation having features in common with the infectious form. EMBO Journal, 2001, 20, 1547-1554.	7.8	58
179	Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature, 2001, 412, 739-743.	27.8	503
180	Identification of Two Prion Protein Regions That Modify Scrapie Incubation Time. Journal of Virology, 2001, 75, 1408-1413.	3.4	95

#	Article	IF	CITATIONS
181	Copper-catalyzed oxidation of the recombinant SHa(29-231) prion protein. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7170-7175.	7.1	139
182	Doppel-induced cerebellar degeneration in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 15288-15293.	7.1	130
183	Folding of Prion Protein to Its Native \hat{I}_{\pm} -Helical Conformation Is under Kinetic Control. Journal of Biological Chemistry, 2001, 276, 19687-19690.	3.4	209
184	Chemically Engineering the Prion Protein Using Stepwise SPPS and Expressed Protein Ligation. , 2001, , 818-819.		0
185	Genetic grafting of membrane-acting peptides to the cytotoxin dianthin augments its ability to de-stabilize lipid bilayers and enhances its cytotoxic potential as the component of transferrin-toxin conjugates. , 2000, 86, 582-589.		16
186	Early Growth Response (Egr)-1 Gene Induction in the Thymus in Response to TCR Ligation During Early Steps in Positive Selection Is Not Required for CD8 Lineage Commitment. Journal of Immunology, 2000, 165, 2444-2450.	0.8	22
187	Inducible Expression of a p56Lck Transgene Reveals a Central Role for Lck in the Differentiation of CD4 SP Thymocytes. Immunity, 2000, 12, 537-546.	14.3	132
188	Long-Term Survival But Impaired Homeostatic Proliferation of Naive T Cells in the Absence of p56lck. Science, 2000, 290, 127-131.	12.6	114
189	Mycobacterial Cpn10 promotes recognition of the mammalian homologue by a mycobacterium-specific antiserum. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1403, 151-157.	4.1	4
190	Characterization of a saporin isoform with lower ribosome-inhibiting activity. Biochemical Journal, 1997, 322, 719-727.	3.7	44
191	Evidence for GroES Acting as a Transcriptional Regulator. Biochemical and Biophysical Research Communications, 1996, 229, 412-418.	2.1	7
192	Anti-CD30 immunotoxins with native and recombinant dianthin 30. Cancer Immunology, Immunotherapy, 1995, 40, 109-114.	4.2	21
193	Substrate recognition by ribosome-inactivating protein studied by molecular modeling and molecular electrostatic potentials. Journal of Molecular Graphics, 1995, 13, 83-88.	1.1	7
194	Mycobacterium tuberculosis Chaperonin 10 Forms Stable Tetrameric and Heptameric Structures. Journal of Biological Chemistry, 1995, 270, 26159-26167.	3.4	28
195	Cochaperonins Are Histone-Binding Proteins. Biochemical and Biophysical Research Communications, 1995, 206, 260-265.	2.1	5
196	Expression inEscherichia coli, purification and functional activity of recombinant human chaperonin 10. FEBS Letters, 1995, 361, 211-214.	2.8	19
197	Anti-CD30 immunotoxins with native and recombinant dianthin 30. Cancer Immunology, Immunotherapy, 1995, 40, 109-114.	4.2	2
198	Heterologous expression, purification, activity and conformational studies of different forms of dianthin 30. Biomedical Peptides, Proteins & Nucleic Acids: Structure, Synthesis & Biological Activity, 1995, 1, 61-8.	0.1	3

#	Article	IF	CITATIONS
199	Identification and cloning of human chaperonin 10 homologue. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1218, 478-480.	2.4	16
200	Expression and Activity of Pre-dianthin 30 and Dianthin 30. Biochemical and Biophysical Research Communications, 1993, 192, 1230-1237.	2.1	12
201	Volume 192, Number 3 (1993), in the article "Expression and Activity of Pre-dianthin 30 and Dianthin 30," by Giuseppe Legname, Gianni Gromo, J. Michael Lord, Nicoletta Monzini, and Daniela Modena, pages 1230-1237. Biochemical and Biophysical Research Communications, 1993, 195, 506.	2.1	1
202	Single-chain ribosome inactivating proteins from plants depurinateEscherichia coli23S ribosomal RNA. FEBS Letters, 1991, 290, 65-68.	2.8	127
203	Nucleotide sequence of cDNA coding for dianthin 30, a ribosome inactivating protein from Dianthus caryophyllus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1090, 119-122.	2.4	36
204	Motor neuron disease in a patient with a monoclonal IgMk directed against GM1, GD1b, and high-molecular-weight neural-specific glycoproteins. Annals of Neurology, 1990, 28, 190-194.	5.3	56
205	Antiâ€GM ₁ IgM antibodies in motor neuron disease and neuropathy. Neurology, 1990, 40, 1747-1747.	1.1	87
206	Anti-myelin-associated glycoprotein IgM antibody titers in neuropathy associated with macroglobulinemia. Annals of Neurology, 1989, 26, 543-550.	5.3	84
207	Effect of an acute injection of melatonin on the basal secretion of hypophyseal hormones in prepubertal and pubertal healthy subjects. European Journal of Endocrinology, 1986, 111, 305-311.	3.7	33
208	Effects of Tetrahydrocannabinol on Melatonin Secretion in Man. Hormone and Metabolic Research, 1986, 18, 77-78.	1.5	27