
Sarah E F D'orazio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7523709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Sequences of Neurotropic Lineage III Listeria monocytogenes Isolates UKVDL9 and 2010L-2198. Microbiology Resource Announcements, 2021, 10, .	0.6	1
2	Neurotropic Lineage III Strains of Listeria monocytogenes Disseminate to the Brain without Reaching High Titer in the Blood. MSphere, 2020, 5, .	2.9	11
3	Enrichment of Neutrophils and Monocytes From the Liver Following Either Oral or Intravenous Listeria monocytogenes Infection. Current Protocols in Immunology, 2020, 130, e102.	3.6	1
4	mSphere of Influence: the View from the Microbiologists of the Future. MSphere, 2019, 4, .	2.9	0
5	Innate and Adaptive Immune Responses during <i>Listeria monocytogenes</i> Infection. Microbiology Spectrum, 2019, 7, .	3.0	33
6	Prostaglandin E2 Inhibits the Ability of Neutrophils to Kill <i>Listeria monocytogenes</i> . Journal of Immunology, 2019, 202, 3474-3482.	0.8	7
7	Innate and Adaptive Immune Responses duringListeria monocytogenesInfection. , 2019, , 803-835.		0
8	Neutrophils from Both Susceptible and Resistant Mice Efficiently Kill Opsonized Listeria monocytogenes. Infection and Immunity, 2018, 86, .	2.2	10
9	A Comparison of Oral and Intravenous Mouse Models of Listeriosis. Pathogens, 2018, 7, 13.	2.8	25
10	Monocytes Are the Predominant Cell Type Associated with <i>Listeria monocytogenes</i> in the Gut, but They Do Not Serve as an Intracellular Growth Niche. Journal of Immunology, 2017, 198, 2796-2804.	0.8	31
11	<i>Listeria monocytogenes</i> Replicate in Bone Marrow–Derived CD11c+ Cells but Not in Dendritic Cells Isolated from the Murine Gastrointestinal Tract. Journal of Immunology, 2017, 199, 3789-3797.	0.8	9
12	Comparison between Listeria sensu stricto and Listeria sensu lato strains identifies novel determinants involved in infection. Scientific Reports, 2017, 7, 17821.	3.3	29
13	Type I IFN Does Not Promote Susceptibility to Foodborne <i>Listeria monocytogenes</i> . Journal of Immunology, 2016, 196, 3109-3116.	0.8	27
14	Intracellular Listeria monocytogenes Comprises a Minimal but Vital Fraction of the Intestinal Burden following Foodborne Infection. Infection and Immunity, 2015, 83, 3146-3156.	2.2	34
15	Animal models for oral transmission of Listeria monocytogenes. Frontiers in Cellular and Infection Microbiology, 2014, 4, 15.	3.9	29
16	Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute Listeria monocytogenes. PLoS Pathogens, 2014, 10, e1004301.	4.7	80
17	<i>Listeria monocytogenes</i> : Cultivation and Laboratory Maintenance. Current Protocols in Microbiology, 2013, 31, 9B.2.1-9B.2.7.	6.5	28
18	Oral Transmission of Listeria monocytogenes in Mice via Ingestion of Contaminated Food. Journal of Visualized Experiments, 2013, , e50381.	0.3	22

SARAH E F D'ORAZIO

#	Article	IF	CITATIONS
19	A Mouse Model of Foodborne <i>Listeria monocytogenes</i> Infection. Current Protocols in Microbiology, 2013, 31, 9B.3.1-9B.3.16.	6.5	24
20	InlA Promotes Dissemination of Listeria monocytogenes to the Mesenteric Lymph Nodes during Food Borne Infection of Mice. PLoS Pathogens, 2012, 8, e1003015.	4.7	77
21	Human CD8+ T cells display a differential ability to undergo cytokine-driven bystander activation. Cellular Immunology, 2011, 272, 79-86.	3.0	9
22	Heat Shock Factor 1 Protects Mice from Rapid Death during <i>Listeria monocytogenes</i> Infection by Regulating Expression of Tumor Necrosis Factor Alpha during Fever. Infection and Immunity, 2011, 79, 177-184.	2.2	32
23	T Cell-Intrinsic Factors Contribute to the Differential Ability of CD8+ T Cells To Rapidly Secrete IFN-Î ³ in the Absence of Antigen. Journal of Immunology, 2011, 186, 1703-1712.	0.8	24
24	Multiple Mechanisms Contribute to the Robust Rapid Gamma Interferon Response by CD8 ⁺ T Cells during <i>Listeria monocytogenes</i> Infection. Infection and Immunity, 2009, 77, 1492-1501.	2.2	15
25	Lymphocytes serve as a reservoir for Listeria monocytogenes growth during infection of mice. Microbial Pathogenesis, 2009, 46, 214-221.	2.9	23
26	Use of the CD107 mobilization assay reveals that cytotoxic T lymphocytes with novel MHC-lb restriction are activated during Listeria monocytogenes infection. Journal of Immunological Methods, 2007, 328, 45-52.	1.4	11
27	Cytosolic Localization of <i>Listeria monocytogenes</i> Triggers an Early IFN-γ Response by CD8+ T Cells That Correlates with Innate Resistance to Infection. Journal of Immunology, 2006, 177, 7146-7154.	0.8	44
28	H2-M3–restricted CD8+ T cells are not required for MHC class Ib–restricted immunity against <i>Listeria monocytogenes </i> . Journal of Experimental Medicine, 2006, 203, 383-391.	8.5	13
29	Class la MHC-Deficient BALB/c Mice Generate CD8+T Cell-Mediated Protective Immunity AgainstListeria monocytogenesInfection. Journal of Immunology, 2003, 171, 291-298.	0.8	33