Kozo Kaibuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7522637/publications.pdf

Version: 2024-02-01

200 papers

23,378 citations

74 h-index

9264

147

g-index

205 all docs

205 docs citations

times ranked

205

22236 citing authors

#	Article	IF	Citations
1	Identification of the Kinase-Substrate Recognition Interface between MYPT1 and Rho-Kinase. Biomolecules, 2022, 12, 159.	4.0	4
2	NMDA-induced activation of the CaMKII-RhoA-Rho-kinase pathway regulates aversive learning. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2022, 95, 1-P-027.	0.0	0
3	Muscarinic signaling regulates voltageâ€gated potassium channel KCNQ2 phosphorylation in the nucleus accumbens via protein kinase C for aversive learning. Journal of Neurochemistry, 2022, 160, 325-341.	3.9	7
4	KANPHOS: A Database of Kinase-Associated Neural Protein Phosphorylation in the Brain. Cells, 2022, 11, 47.	4.1	8
5	Rho–Rho-Kinase Regulates Ras-ERK Signaling Through SynGAP1 for Dendritic Spine Morphology. Neurochemical Research, 2022, 47, 2757-2772.	3.3	7
6	Phosphoproteomic of the acetylcholine pathway enables discovery of the PKC-Î ² -PIX-Rac1-PAK cascade as a stimulatory signal for aversive learning. Molecular Psychiatry, 2022, 27, 3479-3492.	7.9	7
7	Accumbal D2R-medium spiny neurons regulate aversive behaviors through PKA-Rap1 pathway. Neurochemistry International, 2021, 143, 104935.	3.8	14
8	SOCS3–microtubule interaction via CLIP-170 and CLASP2 is critical for modulation of endothelial inflammation and lung injury. Journal of Biological Chemistry, 2021, 296, 100239.	3.4	10
9	Dynamic subcellular localization and transcription activity of the SRF cofactor MKL2 in the striatum are regulated by MAPK. Journal of Neurochemistry, 2021, 157, 1774-1788.	3.9	8
10	Microtubuleâ€dependent mechanism of antiâ€inflammatory effect of SOCS1 in endothelial dysfunction and lung injury. FASEB Journal, 2021, 35, e21388.	0.5	8
11	Striatal TRPV1 activation by acetaminophen ameliorates dopamine D2 receptor antagonist–induced orofacial dyskinesia. JCI Insight, 2021, 6, .	5.0	10
12	Cyclin D1 controls development of cerebellar granule cell progenitors through phosphorylation and stabilization of ATOH1. EMBO Journal, 2021, 40, e105712.	7.8	14
13	The CD44/COL17A1 pathway promotes the formation of multilayered, transformed epithelia. Current Biology, 2021, 31, 3086-3097.e7.	3.9	18
14	Protein kinases phosphorylate long disordered regions in intrinsically disordered proteins. Protein Science, 2020, 29, 564-571.	7.6	14
15	Dopamine Receptor Dop1R2 Stabilizes Appetitive Olfactory Memory through the Raf/MAPK Pathway in <i>Drosophila</i> . Journal of Neuroscience, 2020, 40, 2935-2942.	3.6	6
16	Advances in defining signaling networks for the establishment of neuronal polarity. Current Opinion in Cell Biology, 2020, 63, 76-87.	5.4	12
17	Molecular Mechanism of KCNQ Channels For Reward Behavior. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 1-P-011.	0.0	0
18	Phosphorylation of Npas4 by MAPK regulates reward-related gene expression and behaviors. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 1-YIA-26.	0.0	0

#	Article	IF	CITATIONS
19	Prickle2 and Igsf9b Coordinately Regulate the Cytoarchitecture of the Axon Initial Segment. Cell Structure and Function, 2020, 45, 143-154.	1.1	2
20	IRR is involved in glucose-induced endocytosis after insulin secretion. Journal of Pharmacological Sciences, 2019, 140, 300-304.	2.5	3
21	Neuronal Polarity: Positive and Negative Feedback Signals. Frontiers in Cell and Developmental Biology, 2019, 7, 69.	3.7	50
22	Protein Kinase N Promotes Stress-Induced Cardiac Dysfunction Through Phosphorylation of Myocardin-Related Transcription Factor A and Disruption of Its Interaction With Actin. Circulation, 2019, 140, 1737-1752.	1.6	20
23	GDP-Bound Rab27a Dissociates from the Endocytic Machinery in a Phosphorylation-Dependent Manner after Insulin Secretion. Biological and Pharmaceutical Bulletin, 2019, 42, 1532-1537.	1.4	1
24	Phosphorylation of Gephyrin in Zebrafish Mauthner Cells Governs Glycine Receptor Clustering and Behavioral Desensitization to Sound. Journal of Neuroscience, 2019, 39, 8988-8997.	3.6	12
25	Pathological Progression Induced by the Frontotemporal Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs. Stem Cell Reports, 2019, 13, 684-699.	4.8	46
26	Hyaluronan synthesis supports glutamate transporter activity. Journal of Neurochemistry, 2019, 150, 249-263.	3.9	6
27	LRRK1 phosphorylation of Rab7 at Ser-72 links trafficking of EGFR-containing endosomes to its effector RILP. Journal of Cell Science, 2019, 132, .	2.0	38
28	Phosphorylation of Npas4 by MAPK Regulates Reward-Related Gene Expression and Behaviors. Cell Reports, 2019, 29, 3235-3252.e9.	6.4	37
29	Comprehensive analysis of kinase-oriented phospho-signalling pathways. Journal of Biochemistry, 2019, 165, 301-307.	1.7	9
30	<i>In Vivo</i> Identification of Protein Kinase Substrates by Kinaseâ€Oriented Substrate Screening (KIOSS). Current Protocols in Chemical Biology, 2019, 11, e60.	1.7	10
31	Balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in striatal medium spiny neurons. Neurochemistry International, 2019, 122, 8-18.	3.8	32
32	Targeting Tyro3 ameliorates a model of PGRN-mutant FTLD-TDP via tau-mediated synaptic pathology. Nature Communications, 2018, 9, 433.	12.8	23
33	Phosphorylation of Shank3 by Rho-Kinase regulates surface translocation of NMDA and AMPA receptors in PSD. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-85.	0.0	0
34	KANPHOS Platform: A comprehensive database for kinase-associated neural phosphorylation signaling. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-104.	0.0	0
35	Neuropeptide Y neuronal network dysfunction in the frontal lobe of a genetic mouse model of schizophrenia. Neuropeptides, 2017, 62, 27-35.	2.2	9
36	Phospholipid localization implies microglial morphology and function via Cdc42 <i>in vitro</i> . Glia, 2017, 65, 740-755.	4.9	17

#	Article	IF	Citations
37	Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus. Cell Reports, 2017, 20, 960-972.	6.4	64
38	Discovery of long-range inhibitory signaling to ensure single axon formation. Nature Communications, 2017, 8, 33.	12.8	61
39	NMDA receptor antagonist prevents cell death in the hippocampal dentate gyrus induced by hyponatremia accompanying adrenal insufficiency in rats. Experimental Neurology, 2017, 287, 65-74.	4.1	8
40	A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology. Cell Structure and Function, 2017, 42, 1-13.	1.1	23
41	PI3K regulates endocytosis after insulin secretion via signaling crosstalk between Arf6 and Rab27a. Journal of Cell Science, 2016, 129, 637-49.	2.0	19
42	Stimulation of Synaptic Vesicle Exocytosis by the Mental Disease Gene DISC1 is Mediated by N-Type Voltage-Gated Calcium Channels. Frontiers in Synaptic Neuroscience, 2016, 8, 15.	2.5	14
43	Catecholaminergic neuronal network dysfunction in the frontal lobe of a genetic mouse model of schizophrenia. Acta Neuropsychiatrica, 2016, 28, 117-123.	2.1	5
44	Identification of Protein Kinase Substrates by the Kinaseâ€Interacting Substrate Screening (KISS) Approach. Current Protocols in Cell Biology, 2016, 72, 14.16.1-14.16.12.	2.3	8
45	A new approach for the direct visualization of the membrane cytoskeleton in cryo-electron microscopy: a comparative study with freeze-etching electron microscopy. Microscopy (Oxford,) Tj ETQq $1\ 1\ 0.78$	34 3.1 54 rgB	T / Q verlock 1
46	Role for Daple in nonâ€canonical Wnt signaling during gastric cancer invasion and metastasis. Cancer Science, 2016, 107, 133-139.	3.9	40
47	Phosphorylation Signals in Striatal Medium Spiny Neurons. Trends in Pharmacological Sciences, 2016, 37, 858-871.	8.7	44
48	Survival of corticostriatal neurons by Rho/Rho-kinase signaling pathway. Neuroscience Letters, 2016, 630, 45-52.	2.1	46
49	Immunohistochemical evaluation of the GABAergic neuronal system in the prefrontal cortex of a DISC1 knockout mouse model of schizophrenia. Synapse, 2016, 70, 508-518.	1.2	16
50	Focused Proteomics Revealed a Novel Rho-kinase Signaling Pathway in the Heart. Cell Structure and Function, 2016, 41, 105-120.	1.1	9
51	Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal InÂVivo. Neuron, 2016, 89, 550-565.	8.1	81
52	Regulation of neuronal migration, an emerging topic in autism spectrum disorders. Journal of Neurochemistry, 2016, 136, 440-456.	3.9	89
53	PAR3-aPKC regulates Tiam1 by modulating suppressive internal interactions. Molecular Biology of the Cell, 2016, 27, 1511-1523.	2.1	22
54	Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior. Cell Reports, 2016, 14, 11-21.	6.4	63

#	Article	IF	CITATIONS
55	Phosphorylation of CLIP-170 by LRRK1 regulates EGFR trafficking by promoting recruitment of p150Glued to MT plus-ends. Journal of Cell Science, 2015, 128, 385-96.	2.0	24
56	Identification of the novel autoantigen candidate Rab GDP dissociation inhibitor alpha in isolated adrenocorticotropin deficiency. Endocrine Journal, 2015, 62, 153-160.	1.6	14
57	Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics. Scientific Reports, 2015, 5, 8694.	3.3	33
58	Phosphoproteomic Analysis Using the WW and FHA Domains as Biological Filters. Cell Structure and Function, 2015, 40, 95-104.	1.1	11
59	In vivo Screening for Substrates of Protein Kinase A Using a Combination of Proteomic Approaches and Pharmacological Modulation of Kinase Activity. Cell Structure and Function, 2015, 40, 1-12.	1.1	14
60	IQGAPs as Key Regulators of Actin-cytoskeleton Dynamics. Cell Structure and Function, 2015, 40, 69-77.	1.1	65
61	Regulation of Vascular Endothelial Growth Factor Receptor Function in Angiogenesis by Numb and Numb-Like. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1815-1825.	2.4	14
62	PAR3 and aPKC regulate Golgi organization through CLASP2 phosphorylation to generate cell polarity. Molecular Biology of the Cell, 2015, 26, 751-761.	2.1	34
63	Neuronal polarization. Development (Cambridge), 2015, 142, 2088-2093.	2.5	118
64	Developing novel methods to search for substrates of protein kinases such as Rho-kinase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1663-1666.	2.3	15
65	Kinase-interacting substrate screening is a novel method to identify kinase substrates. Journal of Cell Biology, 2015, 209, 895-912.	5.2	71
66	Extracellular and Intracellular Signaling for Neuronal Polarity. Physiological Reviews, 2015, 95, 995-1024.	28.8	87
67	Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity. Nature Neuroscience, 2015, 18, 698-707.	14.8	51
68	Radial Glial Cellâ€"Neuron Interaction Directs Axon Formation at the Opposite Side of the Neuron from the Contact Site. Journal of Neuroscience, 2015, 35, 14517-14532.	3.6	61
69	Deubiquitinating enzymes regulate Hes1 stability and neuronal differentiation. FEBS Journal, 2015, 282, 2411-2423.	4.7	47
70	TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation. Journal of Cell Biology, 2015, 210, 737-751.	5.2	46
71	Identification of Rare, Single-Nucleotide Mutations in NDE1 and Their Contributions to Schizophrenia Susceptibility. Schizophrenia Bulletin, 2015, 41, 744-753.	4.3	26
72	The Polymorphism of YWHAE, a Gene Encoding 14-3-3Epsilon, and Brain Morphology in Schizophrenia: A Voxel-Based Morphometric Study. PLoS ONE, 2014, 9, e103571.	2.5	14

#	Article	IF	Citations
73	Speed control for neuronal migration in the postnatal brain by Gmip-mediated local inactivation of RhoA. Nature Communications, 2014, 5, 4532.	12.8	54
74	Regulation of cargoâ€selective endocytosis by dynamin 2 <scp>GTP</scp> aseâ€activating protein girdin. EMBO Journal, 2014, 33, 2098-2112.	7.8	34
75	Alterations of GABAergic and dopaminergic systems in mutant mice with disruption of exons 2 and 3 of the Disc1 gene. Neurochemistry International, 2014, 74, 74-83.	3.8	37
76	Cytoskeletal Regulation by AUTS2 in Neuronal Migration and Neuritogenesis. Cell Reports, 2014, 9, 2166-2179.	6.4	109
77	TRIM27/MRTF-B-Dependent Integrin \hat{l}^21 Expression Defines Leading Cells in Cancer Cell Collectives. Cell Reports, 2014, 7, 1156-1167.	6.4	36
78	Pioneering Axons Regulate Neuronal Polarization in the Developing Cerebral Cortex. Neuron, 2014, 81, 814-829.	8.1	139
79	14-3-3ε and ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain. Journal of Neuroscience, 2014, 34, 12168-12181.	3.6	102
80	The polymorphism of YWHAE, a gene encoding 14-3-3epsilon, and orbitofrontal sulcogyral pattern in patients with schizophrenia and healthy subjects. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 51, 166-171.	4.8	15
81	Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 2014, 515, 414-418.	27.8	471
82	Neuronal polarization in vivo: Growing in a complex environment. Current Opinion in Neurobiology, 2014, 27, 215-223.	4.2	41
83	Preferential targeting of p39-activated Cdk5 to Rac1-induced lamellipodia. Molecular and Cellular Neurosciences, 2014, 61, 34-45.	2.2	7
84	Plk1 Phosphorylates CLIP-170 and Regulates Its Binding to Microtubules for Chromosome Alignment. Cell Structure and Function, 2014, 39, 45-59.	1,1	15
85	ERK2-Mediated Phosphorylation of Par3 Regulates Neuronal Polarization. Journal of Neuroscience, 2013, 33, 13270-13285.	3.6	38
86	Proteomic analysis of Girdin-interacting proteins in migrating new neurons in the postnatal mouse brain. Biochemical and Biophysical Research Communications, 2013, 442, 16-21.	2.1	4
87	TAG- $1\hat{a}\in$ assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nature Neuroscience, 2013, 16, 1556-1566.	14.8	93
88	Astroglial IFITM3 mediates neuronal impairments following neonatal immune challenge in mice. Glia, 2013, 61, 679-693.	4.9	53
89	Neuronal Per Arnt Sim (PAS) Domain Protein 4 (NPAS4) Regulates Neurite Outgrowth and Phosphorylation of Synapsin I. Journal of Biological Chemistry, 2013, 288, 2655-2664.	3.4	33
90	Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nature Cell Biology, 2013, 15, 249-260.	10.3	221

#	Article	IF	Citations
91	Analysis of the VAV3 as Candidate Gene for Schizophrenia: Evidences From Voxel-Based Morphometry and Mutation Screening. Schizophrenia Bulletin, 2013, 39, 720-728.	4.3	19
92	RhoGEF12 controls cardiac remodeling by integrating G protein– and integrin-dependent signaling cascades. Journal of Experimental Medicine, 2013, 210, 665-673.	8.5	32
93	Activated Cdc42-Bound IQGAP1 Determines the Cellular Endocytic Site. Molecular and Cellular Biology, 2013, 33, 4834-4843.	2.3	28
94	RhoGEF-mediated vasoconstriction in hypertension. Hypertension Research, 2013, 36, 930-931.	2.7	2
95	IQGAP1 suppresses \hat{T}^2 RII-mediated myofibroblastic activation and metastatic growth in liver. Journal of Clinical Investigation, 2013, 123, 1138-1156.	8.2	78
96	RhoGEF12 controls cardiac remodeling by integrating G protein– and integrin-dependent signaling cascades. Journal of Cell Biology, 2013, 201, i1-i1.	5.2	0
97	Resequencing and Association Analysis of the KALRN and EPHB1 Genes And Their Contribution to Schizophrenia Susceptibility. Schizophrenia Bulletin, 2012, 38, 552-560.	4.3	74
98	The inositol 5-phosphatase SHIP2 is an effector of RhoA and is involved in cell polarity and migration. Molecular Biology of the Cell, 2012, 23, 2593-2604.	2.1	47
99	Reconstitution of dynamic microtubules with <i>Drosophila</i> XMAP215, EB1, and Sentin. Journal of Cell Biology, 2012, 199, 849-862.	5.2	54
100	The Dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility. Nature Communications, 2012, 3, 859.	12.8	78
101	Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration. Journal of Cell Biology, 2012, 199, 331-345.	5.2	65
102	Proteomic Screening for Rho-kinase Substrates by Combining Kinase and Phosphatase Inhibitors with 14-3-3ζ Affinity Chromatography. Cell Structure and Function, 2012, 37, 39-48.	1.1	31
103	Involvement of Girdin in the Determination of Cell Polarity during Cell Migration. PLoS ONE, 2012, 7, e36681.	2.5	49
104	Distinct Distribution and Localization of Rho-kinase in Mouse Epithelial, Muscle and Neural Tissues. Cell Structure and Function, 2012, 37, 155-175.	1.1	56
105	Genome-Wide Association Study of Schizophrenia in a Japanese Population. Biological Psychiatry, 2011, 69, 472-478.	1.3	152
106	Role of a tyrosine phosphorylation of SMG-9 in binding of SMG-9 to IQGAP and the NMD complex. Biochemical and Biophysical Research Communications, 2011, 410, 29-33.	2.1	7
107	Flexible Search for Single-Axon Morphology during Neuronal Spontaneous Polarization. PLoS ONE, 2011, 6, e19034.	2.5	18
108	NMDA receptor regulates migration of newly generated neurons in the adult hippocampus via <i>Disruptedâ€Inâ€Schizophrenia 1</i> (<i>DISC1</i>). Journal of Neurochemistry, 2011, 118, 34-44.	3.9	67

#	Article	IF	Citations
109	Impairment of the tyrosine hydroxylase neuronal network in the orbitofrontal cortex of a genetically modified mouse model of schizophrenia. Brain Research, 2011, 1392, 47-53.	2.2	17
110	Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinaseâ€3 inhibition. EMBO Molecular Medicine, 2011, 3, 682-696.	6.9	56
111	Neuronal polarity in 2011. Developmental Neurobiology, 2011, 71, 401-402.	3.0	1
112	The role of selective transport in neuronal polarization. Developmental Neurobiology, 2011, 71, 445-457.	3.0	25
113	EB1 promotes microtubule dynamics by recruiting Sentin in <i>Drosophila</i> cells. Journal of Cell Biology, 2011, 193, 973-983.	5.2	51
114	Numb controls E-cadherin endocytosis through p120 catenin with aPKC. Molecular Biology of the Cell, 2011, 22, 3103-3119.	2.1	92
115	Thioredoxin Mediates Oxidation-Dependent Phosphorylation of CRMP2 and Growth Cone Collapse. Science Signaling, 2011, 4, ra26.	3.6	103
116	Girdin Is an Intrinsic Regulator of Neuroblast Chain Migration in the Rostral Migratory Stream of the Postnatal Brain. Journal of Neuroscience, 2011, 31, 8109-8122.	3.6	64
117	Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Human Molecular Genetics, 2011, 20, 4666-4683.	2.9	128
118	Protein kinase G signaling disrupts Rac1-dependent focal adhesion assembly in liver specific pericytes. American Journal of Physiology - Cell Physiology, 2011, 301, C66-C74.	4.6	19
119	Local Application of Neurotrophins Specifies Axons Through Inositol 1,4,5-Trisphosphate, Calcium, and Ca ²⁺ /Calmodulin–Dependent Protein Kinases. Science Signaling, 2011, 4, ra76.	3.6	47
120	Identification of focal adhesion kinase (FAK) and phosphatidylinositol 3â€kinase (PI3â€kinase) as Par3 partners by proteomic analysis. Cytoskeleton, 2010, 67, 297-308.	2.0	20
121	Rhoâ€kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton, 2010, 67, 545-554.	2.0	763
122	Binding of APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells. EMBO Journal, 2010, 29, 1192-1204.	7.8	96
123	AMPK controls the speed of microtubule polymerization and directional cell migration through CLIP-170 phosphorylation. Nature Cell Biology, 2010, 12, 583-590.	10.3	168
124	Dysfunction of dopamine release in the prefrontal cortex of dysbindin deficient sandy mice: An in vivo microdialysis study. Neuroscience Letters, 2010, 470, 134-138.	2.1	38
125	Migration defects by DISC1 knockdown in C57BL/6, 129X1/SvJ, and ICR strains via in utero gene transfer and virus-mediated RNAi. Biochemical and Biophysical Research Communications, 2010, 400, 631-637.	2.1	38
126	A Proteomic Approach for Comprehensively Screening Substrates of Protein Kinases Such as Rho-Kinase. PLoS ONE, 2010, 5, e8704.	2.5	42

#	Article	IF	CITATIONS
127	Phosphorylation of CLASP2 by GSK- $3\hat{l}^2$ regulates its interaction with IQGAP1, EB1 and microtubules. Journal of Cell Science, 2009, 122, 2969-2979.	2.0	132
128	Cadherin-mediated Intercellular Adhesion and Signaling Cascades Involving Small GTPases. Cold Spring Harbor Perspectives in Biology, 2009, 1, a003020-a003020.	5.5	68
129	Rho-kinase Contributes to Sustained RhoA Activation through Phosphorylation of p190A RhoGAP. Journal of Biological Chemistry, 2009, 284, 5067-5076.	3.4	53
130	Proteomic analysis reveals novel binding partners of dysbindin, a schizophreniaâ€related protein. Journal of Neurochemistry, 2009, 110, 1567-1574.	3.9	26
131	CRMPâ€2 directly binds to cytoplasmic dynein and interferes with its activity. Journal of Neurochemistry, 2009, 111, 380-390.	3.9	54
132	Anterograde Transport of TrkB in Axons Is Mediated by Direct Interaction with Slp1 and Rab27. Developmental Cell, 2009, 16, 675-686.	7.0	176
133	Roles of Disrupted-In-Schizophrenia 1-Interacting Protein Girdin in Postnatal Development of the Dentate Gyrus. Neuron, 2009, 63, 774-787.	8.1	164
134	Rho-Kinase Phosphorylates PAR-3 and Disrupts PAR Complex Formation. Developmental Cell, 2008, 14, 205-215.	7.0	137
135	Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia. Human Molecular Genetics, 2008, 17, 3212-3222.	2.9	97
136	Roles of IQGAP1 in Cell Polarization and Migration. Novartis Foundation Symposium, 2008, , 92-105.	1.1	15
137	Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10346-10351.	7.1	101
138	DISC1 Regulates Neurotrophin-Induced Axon Elongation via Interaction with Grb2. Journal of Neuroscience, 2007, 27, 4-14.	3.6	102
139	IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. Journal of Cell Science, 2007, 120, 567-577.	2.0	138
140	Dia1 and IQGAP1 interact in cell migration and phagocytic cup formation. Journal of Cell Biology, 2007, 178, 193-200.	5.2	180
141	DISC1 Regulates the Transport of the NUDEL/LIS1/14-3-3Îμ Complex through Kinesin-1. Journal of Neuroscience, 2007, 27, 15-26.	3.6	214
142	2P021 Structural and functional studies of CLIP-170(Proteins-structure and structure-function) Tj ETQq0 0 0 rgBT	/8.yerlock	10 Tf 50 14
143	Rho-kinase modulates the function of STEF, a Rac GEF, through its phosphorylation. Biochemical and Biophysical Research Communications, 2007, 355, 788-794.	2.1	24
144	Numb Controls Integrin Endocytosis for Directional Cell Migration with aPKC and PAR-3. Developmental Cell, 2007, 13, 15-28.	7.0	300

#	Article	IF	Citations
145	Neuronal polarity: from extracellular signals to intracellular mechanisms. Nature Reviews Neuroscience, 2007, 8, 194-205.	10.2	577
146	Ras regulates neuronal polarity via the PI3-kinase/Akt/GSK-3β/CRMP-2 pathway. Biochemical and Biophysical Research Communications, 2006, 340, 62-68.	2.1	148
147	Essential Roles for GSK-3s and GSK-3-Primed Substrates in Neurotrophin-Induced and Hippocampal Axon Growth. Neuron, 2006, 52, 981-996.	8.1	227
148	Sema4D/plexinâ€B1 activates GSKâ€3β through Râ€Ras GAP activity, inducing growth cone collapse. EMBO Reports, 2006, 7, 704-709.	4.5	127
149	Characterization and function of MYPT2, a target subunit of myosin phosphatase in heart. Cellular Signalling, 2006, 18, 1408-1416.	3.6	55
150	Molecular Mechanism for the Regulation of Rho-Kinase by Dimerization and Its Inhibition by Fasudil. Structure, 2006, 14, 589-600.	3.3	135
151	Role of Numb in Dendritic Spine Development with a Cdc42 GEF Intersectin and EphB2. Molecular Biology of the Cell, 2006, 17, 1273-1285.	2.1	99
152	Interaction between ROCK II and Nucleophosmin/B23 in the Regulation of Centrosome Duplication. Molecular and Cellular Biology, 2006, 26, 9016-9034.	2.3	89
153	Nuclear Rho Kinase, ROCK2, Targets p300 Acetyltransferase. Journal of Biological Chemistry, 2006, 281, 15320-15329.	3.4	92
154	Tubulin and CRMP-2 complex is transported via Kinesin-1. Journal of Neurochemistry, 2005, 93, 1371-1382.	3.9	197
155	Regulatory machinery of UNC-33 Ce-CRMP localization in neurites during neuronal development in Caenorhabditis elegans. Journal of Neurochemistry, 2005, 95, 1629-1641.	3.9	41
156	PAR-6–PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nature Cell Biology, 2005, 7, 270-277.	10.3	335
157	Regulation of microtubules in cell migration. Trends in Cell Biology, 2005, 15, 76-83.	7.9	276
158	Phosphorylation by Rho Kinase Regulates CRMP-2 Activity in Growth Cones. Molecular and Cellular Biology, 2005, 25, 9973-9984.	2.3	234
159	CRMP-2 Is Involved in Kinesin-1-Dependent Transport of the Sra-1/WAVE1 Complex and Axon Formation. Molecular and Cellular Biology, 2005, 25, 9920-9935.	2.3	229
160	IQGAP1: a key regulator of adhesion and migration. Journal of Cell Science, 2005, 118, 2085-2092.	2.0	324
161	GSK-3Î ² Regulates Phosphorylation of CRMP-2 and Neuronal Polarity. Cell, 2005, 120, 137-149.	28.9	847
162	Akt/PKB Regulates Actin Organization and Cell Motility via Girdin/APE. Developmental Cell, 2005, 9, 389-402.	7.0	381

#	Article	IF	CITATIONS
163	Key Regulators in Neuronal Polarity. Neuron, 2005, 48, 881-884.	8.1	135
164	Positive Role of IQGAP1, an Effector of Rac1, in Actin-Meshwork Formation at Sites of Cell-Cell Contact. Molecular Biology of the Cell, 2004, 15, 1065-1076.	2.1	122
165	Role of the PAR-3–KIF3 complex in the establishment of neuronal polarity. Nature Cell Biology, 2004, 6, 328-334.	10.3	255
166	PIP ₃ is involved in neuronal polarization and axon formation. Journal of Neurochemistry, 2004, 89, 109-118.	3.9	193
167	Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: Role of Rho-dependent mechanisms. Journal of Cellular Physiology, 2004, 201, 55-70.	4.1	170
168	Role of CRMP-2 in neuronal polarity. Journal of Neurobiology, 2004, 58, 34-47.	3.6	168
169	Novel role of microtubules in thrombinâ€induced endothelial barrier dysfunction. FASEB Journal, 2004, 18, 1879-1890.	0.5	182
170	Interaction with IQGAP1 Links APC to Rac1, Cdc42, and Actin Filaments during Cell Polarization and Migration. Developmental Cell, 2004, 7, 871-883.	7.0	421
171	Roles of Rho-family GTPases in cell polarisation and directional migration. Current Opinion in Cell Biology, 2003, 15, 590-597.	5.4	421
172	Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase. Journal of Neurochemistry, 2003, 87, 780-790.	3.9	91
173	CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nature Cell Biology, 2003, 5, 819-826.	10.3	227
174	Parallel Coiled-coil Association of the RhoA-binding Domain in Rho-kinase. Journal of Biological Chemistry, 2003, 278, 46046-46051.	3.4	53
175	Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170. Cell, 2002, 109, 873-885.	28.9	537
176	CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biology, 2002, 4, 583-591.	10.3	687
177	CRMP-2 induces axons in cultured hippocampal neurons. Nature Neuroscience, 2001, 4, 781-782.	14.8	506
178	Rho-family GTPases in cadherin-mediated cell â€" cell adhesion. Nature Reviews Molecular Cell Biology, 2001, 2, 887-897.	37.0	394
179	Rho-Kinase–Mediated Contraction of Isolated Stress Fibers. Journal of Cell Biology, 2001, 153, 569-584.	5.2	285
180	Involvement of IQGAP1, an Effector of Rac1 and Cdc42 GTPases, in Cell-Cell Dissociation during Cell Scattering. Molecular and Cellular Biology, 2001, 21, 2165-2183.	2.3	87

#	Article	IF	Citations
181	<i>In vivo</i> Gene Transfer of Dominantâ€Negative Rhoâ€Kinase Induces Regression of Coronary Arteriosclerosis in Pigs. Annals of the New York Academy of Sciences, 2001, 947, 407-411.	3.8	14
182	Purification and in vitro activity of Rho-associated kinase. Methods in Enzymology, 2000, 325, 149-155.	1.0	16
183	Phosphorylation of ERM proteins at filopodia induced by Cdc42. Genes To Cells, 2000, 5, 571-581.	1.2	108
184	Phosphorylation of Collapsin Response Mediator Protein-2 by Rho-kinase. Journal of Biological Chemistry, 2000, 275, 23973-23980.	3.4	296
185	RhoA and Rho Kinase Regulate the Epithelial Na+/H+ Exchanger NHE3. Journal of Biological Chemistry, 2000, 275, 28599-28606.	3.4	62
186	The COOH Terminus of Rho-kinase Negatively Regulates Rho-kinase Activity. Journal of Biological Chemistry, 1999, 274, 32418-32424.	3.4	246
187	Phosphorylation of Adducin by Rho-Kinase Plays a Crucial Role in Cell Motility. Journal of Cell Biology, 1999, 145, 347-361.	5.2	278
188	Phosphorylation of Myosin-Binding Subunit (Mbs) of Myosin Phosphatase by Rho-Kinase in Vivo. Journal of Cell Biology, 1999, 147, 1023-1038.	5.2	520
189	Cdc42 and Rac1 Regulate the Interaction of IQGAP1 with \hat{I}^2 -Catenin. Journal of Biological Chemistry, 1999, 274, 26044-26050.	3.4	205
190	The Structural Basis of Rho Effector Recognition Revealed by the Crystal Structure of Human RhoA Complexed with the Effector Domain of PKN/PRK1. Molecular Cell, 1999, 4, 793-803.	9.7	156
191	Distribution of Rho-Kinase in the Bovine Brain. Biochemical and Biophysical Research Communications, 1999, 263, 575-579.	2.1	68
192	Myosin II activation promotes neurite retraction during the action of Rho and Rhoâ€kinase. Genes To Cells, 1998, 3, 177-188.	1.2	236
193	Role of IQGAP1, a Target of the Small GTPases Cdc42 and Rac1, in Regulation of E-Cadherin- Mediated Cell-Cell Adhesion., 1998, 281, 832-835.		454
194	Regulation of the Association of Adducin with Actin Filaments by Rho-associated Kinase (Rho-kinase) and Myosin Phosphatase. Journal of Biological Chemistry, 1998, 273, 5542-5548.	3.4	186
195	Association of the Myosin-binding Subunit of Myosin Phosphatase and Moesin: Dual Regulation of Moesin Phosphorylation by Rho-associated Kinase and Myosin Phosphatase. Journal of Cell Biology, 1998, 141, 409-418.	5.2	197
196	Rho-Kinase Phosphorylates COOH-terminal Threonines of Ezrin/Radixin/Moesin (ERM) Proteins and Regulates Their Head-to-Tail Association. Journal of Cell Biology, 1998, 140, 647-657.	5.2	788
197	Regulation of Cross-linking of Actin Filament by IQGAP1, a Target for Cdc42. Journal of Biological Chemistry, 1997, 272, 29579-29583.	3.4	184
198	Identification of IQGAP as a Putative Target for the Small GTPases, Cdc42 and Rac1. Journal of Biological Chemistry, 1996, 271, 23363-23367.	3.4	290

#	Article	IF	CITATIONS
199	Phosphorylation and Activation of Myosin by Rho-associated Kinase (Rho-kinase). Journal of Biological Chemistry, 1996, 271, 20246-20249.	3.4	1,767
200	CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. , 0, .		1