
Kozo Kaibuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7522637/publications.pdf Version: 2024-02-01

KOZO KAIRUCHI

#	Article	IF	CITATIONS
1	Phosphorylation and Activation of Myosin by Rho-associated Kinase (Rho-kinase). Journal of Biological Chemistry, 1996, 271, 20246-20249.	3.4	1,767
2	GSK-3Î ² Regulates Phosphorylation of CRMP-2 and Neuronal Polarity. Cell, 2005, 120, 137-149.	28.9	847
3	Rho-Kinase Phosphorylates COOH-terminal Threonines of Ezrin/Radixin/Moesin (ERM) Proteins and Regulates Their Head-to-Tail Association. Journal of Cell Biology, 1998, 140, 647-657.	5.2	788
4	Rhoâ€kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton, 2010, 67, 545-554.	2.0	763
5	CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biology, 2002, 4, 583-591.	10.3	687
6	Neuronal polarity: from extracellular signals to intracellular mechanisms. Nature Reviews Neuroscience, 2007, 8, 194-205.	10.2	577
7	Rac1 and Cdc42 Capture Microtubules through IQGAP1 and CLIP-170. Cell, 2002, 109, 873-885.	28.9	537
8	Phosphorylation of Myosin-Binding Subunit (Mbs) of Myosin Phosphatase by Rho-Kinase in Vivo. Journal of Cell Biology, 1999, 147, 1023-1038.	5.2	520
9	CRMP-2 induces axons in cultured hippocampal neurons. Nature Neuroscience, 2001, 4, 781-782.	14.8	506
10	Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 2014, 515, 414-418.	27.8	471
11	Role of IQGAP1, a Target of the Small GTPases Cdc42 and Rac1, in Regulation of E-Cadherin- Mediated Cell-Cell Adhesion. , 1998, 281, 832-835.		454
12	Roles of Rho-family GTPases in cell polarisation and directional migration. Current Opinion in Cell Biology, 2003, 15, 590-597.	5.4	421
13	Interaction with IQGAP1 Links APC to Rac1, Cdc42, and Actin Filaments during Cell Polarization and Migration. Developmental Cell, 2004, 7, 871-883.	7.0	421
14	Rho-family GTPases in cadherin-mediated cell — cell adhesion. Nature Reviews Molecular Cell Biology, 2001, 2, 887-897.	37.0	394
15	Akt/PKB Regulates Actin Organization and Cell Motility via Girdin/APE. Developmental Cell, 2005, 9, 389-402.	7.0	381
16	PAR-6–PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nature Cell Biology, 2005, 7, 270-277.	10.3	335
17	IQGAP1: a key regulator of adhesion and migration. Journal of Cell Science, 2005, 118, 2085-2092.	2.0	324
18	Numb Controls Integrin Endocytosis for Directional Cell Migration with aPKC and PAR-3. Developmental Cell, 2007, 13, 15-28.	7.0	300

#	Article	IF	CITATIONS
19	Phosphorylation of Collapsin Response Mediator Protein-2 by Rho-kinase. Journal of Biological Chemistry, 2000, 275, 23973-23980.	3.4	296
20	Identification of IQGAP as a Putative Target for the Small GTPases, Cdc42 and Rac1. Journal of Biological Chemistry, 1996, 271, 23363-23367.	3.4	290
21	Rho-Kinase–Mediated Contraction of Isolated Stress Fibers. Journal of Cell Biology, 2001, 153, 569-584.	5.2	285
22	Phosphorylation of Adducin by Rho-Kinase Plays a Crucial Role in Cell Motility. Journal of Cell Biology, 1999, 145, 347-361.	5.2	278
23	Regulation of microtubules in cell migration. Trends in Cell Biology, 2005, 15, 76-83.	7.9	276
24	Role of the PAR-3–KIF3 complex in the establishment of neuronal polarity. Nature Cell Biology, 2004, 6, 328-334.	10.3	255
25	The COOH Terminus of Rho-kinase Negatively Regulates Rho-kinase Activity. Journal of Biological Chemistry, 1999, 274, 32418-32424.	3.4	246
26	Myosin II activation promotes neurite retraction during the action of Rho and Rhoâ€kinase. Genes To Cells, 1998, 3, 177-188.	1.2	236
27	Phosphorylation by Rho Kinase Regulates CRMP-2 Activity in Growth Cones. Molecular and Cellular Biology, 2005, 25, 9973-9984.	2.3	234
28	CRMP-2 Is Involved in Kinesin-1-Dependent Transport of the Sra-1/WAVE1 Complex and Axon Formation. Molecular and Cellular Biology, 2005, 25, 9920-9935.	2.3	229
29	CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nature Cell Biology, 2003, 5, 819-826.	10.3	227
30	Essential Roles for GSK-3s and GSK-3-Primed Substrates in Neurotrophin-Induced and Hippocampal Axon Growth. Neuron, 2006, 52, 981-996.	8.1	227
31	Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nature Cell Biology, 2013, 15, 249-260.	10.3	221
32	DISC1 Regulates the Transport of the NUDEL/LIS1/14-3-3ε Complex through Kinesin-1. Journal of Neuroscience, 2007, 27, 15-26.	3.6	214
33	Cdc42 and Rac1 Regulate the Interaction of IQGAP1 with β-Catenin. Journal of Biological Chemistry, 1999, 274, 26044-26050.	3.4	205
34	Association of the Myosin-binding Subunit of Myosin Phosphatase and Moesin: Dual Regulation of Moesin Phosphorylation by Rho-associated Kinase and Myosin Phosphatase. Journal of Cell Biology, 1998, 141, 409-418.	5.2	197
35	Tubulin and CRMP-2 complex is transported via Kinesin-1. Journal of Neurochemistry, 2005, 93, 1371-1382.	3.9	197
36	PIP ₃ is involved in neuronal polarization and axon formation. Journal of Neurochemistry, 2004, 89, 109-118.	3.9	193

#	Article	IF	CITATIONS
37	Regulation of the Association of Adducin with Actin Filaments by Rho-associated Kinase (Rho-kinase) and Myosin Phosphatase. Journal of Biological Chemistry, 1998, 273, 5542-5548.	3.4	186
38	Regulation of Cross-linking of Actin Filament by IQGAP1, a Target for Cdc42. Journal of Biological Chemistry, 1997, 272, 29579-29583.	3.4	184
39	Novel role of microtubules in thrombinâ€induced endothelial barrier dysfunction. FASEB Journal, 2004, 18, 1879-1890.	0.5	182
40	Dia1 and IQGAP1 interact in cell migration and phagocytic cup formation. Journal of Cell Biology, 2007, 178, 193-200.	5.2	180
41	Anterograde Transport of TrkB in Axons Is Mediated by Direct Interaction with Slp1 and Rab27. Developmental Cell, 2009, 16, 675-686.	7.0	176
42	Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: Role of Rho-dependent mechanisms. Journal of Cellular Physiology, 2004, 201, 55-70.	4.1	170
43	Role of CRMP-2 in neuronal polarity. Journal of Neurobiology, 2004, 58, 34-47.	3.6	168
44	AMPK controls the speed of microtubule polymerization and directional cell migration through CLIP-170 phosphorylation. Nature Cell Biology, 2010, 12, 583-590.	10.3	168
45	Roles of Disrupted-In-Schizophrenia 1-Interacting Protein Girdin in Postnatal Development of the Dentate Gyrus. Neuron, 2009, 63, 774-787.	8.1	164
46	The Structural Basis of Rho Effector Recognition Revealed by the Crystal Structure of Human RhoA Complexed with the Effector Domain of PKN/PRK1. Molecular Cell, 1999, 4, 793-803.	9.7	156
47	Genome-Wide Association Study of Schizophrenia in a Japanese Population. Biological Psychiatry, 2011, 69, 472-478.	1.3	152
48	Ras regulates neuronal polarity via the PI3-kinase/Akt/GSK-3β/CRMP-2 pathway. Biochemical and Biophysical Research Communications, 2006, 340, 62-68.	2.1	148
49	Pioneering Axons Regulate Neuronal Polarization in the Developing Cerebral Cortex. Neuron, 2014, 81, 814-829.	8.1	139
50	IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. Journal of Cell Science, 2007, 120, 567-577.	2.0	138
51	Rho-Kinase Phosphorylates PAR-3 and Disrupts PAR Complex Formation. Developmental Cell, 2008, 14, 205-215.	7.0	137
52	Key Regulators in Neuronal Polarity. Neuron, 2005, 48, 881-884.	8.1	135
53	Molecular Mechanism for the Regulation of Rho-Kinase by Dimerization and Its Inhibition by Fasudil. Structure, 2006, 14, 589-600.	3.3	135
54	Phosphorylation of CLASP2 by GSK-3β regulates its interaction with IQGAP1, EB1 and microtubules. Journal of Cell Science, 2009, 122, 2969-2979.	2.0	132

#	Article	IF	CITATIONS
55	Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Human Molecular Genetics, 2011, 20, 4666-4683.	2.9	128
56	Sema4D/plexinâ€B1 activates GSKâ€3β through Râ€Ras GAP activity, inducing growth cone collapse. EMBO Reports, 2006, 7, 704-709.	4.5	127
57	Positive Role of IQGAP1, an Effector of Rac1, in Actin-Meshwork Formation at Sites of Cell-Cell Contact. Molecular Biology of the Cell, 2004, 15, 1065-1076.	2.1	122
58	Neuronal polarization. Development (Cambridge), 2015, 142, 2088-2093.	2.5	118
59	Cytoskeletal Regulation by AUTS2 in Neuronal Migration and Neuritogenesis. Cell Reports, 2014, 9, 2166-2179.	6.4	109
60	Phosphorylation of ERM proteins at filopodia induced by Cdc42. Genes To Cells, 2000, 5, 571-581.	1.2	108
61	Thioredoxin Mediates Oxidation-Dependent Phosphorylation of CRMP2 and Growth Cone Collapse. Science Signaling, 2011, 4, ra26.	3.6	103
62	DISC1 Regulates Neurotrophin-Induced Axon Elongation via Interaction with Grb2. Journal of Neuroscience, 2007, 27, 4-14.	3.6	102
63	14-3-3ε and ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain. Journal of Neuroscience, 2014, 34, 12168-12181.	3.6	102
64	Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10346-10351.	7.1	101
65	Role of Numb in Dendritic Spine Development with a Cdc42 GEF Intersectin and EphB2. Molecular Biology of the Cell, 2006, 17, 1273-1285.	2.1	99
66	Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia. Human Molecular Genetics, 2008, 17, 3212-3222.	2.9	97
67	Binding of APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells. EMBO Journal, 2010, 29, 1192-1204.	7.8	96
68	TAG-1–assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nature Neuroscience, 2013, 16, 1556-1566.	14.8	93
69	Nuclear Rho Kinase, ROCK2, Targets p300 Acetyltransferase. Journal of Biological Chemistry, 2006, 281, 15320-15329.	3.4	92
70	Numb controls E-cadherin endocytosis through p120 catenin with aPKC. Molecular Biology of the Cell, 2011, 22, 3103-3119.	2.1	92
71	Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase. Journal of Neurochemistry, 2003, 87, 780-790.	3.9	91
72	Interaction between ROCK II and Nucleophosmin/B23 in the Regulation of Centrosome Duplication. Molecular and Cellular Biology, 2006, 26, 9016-9034.	2.3	89

#	Article	IF	CITATIONS
73	Regulation of neuronal migration, an emerging topic in autism spectrum disorders. Journal of Neurochemistry, 2016, 136, 440-456.	3.9	89
74	Involvement of IQGAP1, an Effector of Rac1 and Cdc42 GTPases, in Cell-Cell Dissociation during Cell Scattering. Molecular and Cellular Biology, 2001, 21, 2165-2183.	2.3	87
75	Extracellular and Intracellular Signaling for Neuronal Polarity. Physiological Reviews, 2015, 95, 995-1024.	28.8	87
76	Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal InÂVivo. Neuron, 2016, 89, 550-565.	8.1	81
77	The Dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility. Nature Communications, 2012, 3, 859.	12.8	78
78	IQCAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver. Journal of Clinical Investigation, 2013, 123, 1138-1156.	8.2	78
79	Resequencing and Association Analysis of the KALRN and EPHB1 Genes And Their Contribution to Schizophrenia Susceptibility. Schizophrenia Bulletin, 2012, 38, 552-560.	4.3	74
80	Kinase-interacting substrate screening is a novel method to identify kinase substrates. Journal of Cell Biology, 2015, 209, 895-912.	5.2	71
81	Distribution of Rho-Kinase in the Bovine Brain. Biochemical and Biophysical Research Communications, 1999, 263, 575-579.	2.1	68
82	Cadherin-mediated Intercellular Adhesion and Signaling Cascades Involving Small GTPases. Cold Spring Harbor Perspectives in Biology, 2009, 1, a003020-a003020.	5.5	68
83	NMDA receptor regulates migration of newly generated neurons in the adult hippocampus via <i>Disruptedâ€Inâ€Schizophrenia 1</i> (<i>DISC1</i>). Journal of Neurochemistry, 2011, 118, 34-44.	3.9	67
84	Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration. Journal of Cell Biology, 2012, 199, 331-345.	5.2	65
85	IQGAPs as Key Regulators of Actin-cytoskeleton Dynamics. Cell Structure and Function, 2015, 40, 69-77.	1.1	65
86	Girdin Is an Intrinsic Regulator of Neuroblast Chain Migration in the Rostral Migratory Stream of the Postnatal Brain. Journal of Neuroscience, 2011, 31, 8109-8122.	3.6	64
87	Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus. Cell Reports, 2017, 20, 960-972.	6.4	64
88	Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior. Cell Reports, 2016, 14, 11-21.	6.4	63
89	RhoA and Rho Kinase Regulate the Epithelial Na+/H+ Exchanger NHE3. Journal of Biological Chemistry, 2000, 275, 28599-28606.	3.4	62
90	Radial Glial Cell–Neuron Interaction Directs Axon Formation at the Opposite Side of the Neuron from the Contact Site. Journal of Neuroscience, 2015, 35, 14517-14532.	3.6	61

#	Article	IF	CITATIONS
91	Discovery of long-range inhibitory signaling to ensure single axon formation. Nature Communications, 2017, 8, 33.	12.8	61
92	Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinaseâ€3 inhibition. EMBO Molecular Medicine, 2011, 3, 682-696.	6.9	56
93	Distinct Distribution and Localization of Rho-kinase in Mouse Epithelial, Muscle and Neural Tissues. Cell Structure and Function, 2012, 37, 155-175.	1.1	56
94	Characterization and function of MYPT2, a target subunit of myosin phosphatase in heart. Cellular Signalling, 2006, 18, 1408-1416.	3.6	55
95	CRMPâ $\in 2$ directly binds to cytoplasmic dynein and interferes with its activity. Journal of Neurochemistry, 2009, 111, 380-390.	3.9	54
96	Reconstitution of dynamic microtubules with <i>Drosophila</i> XMAP215, EB1, and Sentin. Journal of Cell Biology, 2012, 199, 849-862.	5.2	54
97	Speed control for neuronal migration in the postnatal brain by Gmip-mediated local inactivation of RhoA. Nature Communications, 2014, 5, 4532.	12.8	54
98	Parallel Coiled-coil Association of the RhoA-binding Domain in Rho-kinase. Journal of Biological Chemistry, 2003, 278, 46046-46051.	3.4	53
99	Rho-kinase Contributes to Sustained RhoA Activation through Phosphorylation of p190A RhoGAP. Journal of Biological Chemistry, 2009, 284, 5067-5076.	3.4	53
100	Astroglial IFITM3 mediates neuronal impairments following neonatal immune challenge in mice. Glia, 2013, 61, 679-693.	4.9	53
101	EB1 promotes microtubule dynamics by recruiting Sentin in <i>Drosophila</i> cells. Journal of Cell Biology, 2011, 193, 973-983.	5.2	51
102	Disrupted-in-schizophrenia 1 regulates transport of ITPR1 mRNA for synaptic plasticity. Nature Neuroscience, 2015, 18, 698-707.	14.8	51
103	Neuronal Polarity: Positive and Negative Feedback Signals. Frontiers in Cell and Developmental Biology, 2019, 7, 69.	3.7	50
104	Involvement of Girdin in the Determination of Cell Polarity during Cell Migration. PLoS ONE, 2012, 7, e36681.	2.5	49
105	Local Application of Neurotrophins Specifies Axons Through Inositol 1,4,5-Trisphosphate, Calcium, and Ca ²⁺ /Calmodulin–Dependent Protein Kinases. Science Signaling, 2011, 4, ra76.	3.6	47
106	The inositol 5-phosphatase SHIP2 is an effector of RhoA and is involved in cell polarity and migration. Molecular Biology of the Cell, 2012, 23, 2593-2604.	2.1	47
107	Deubiquitinating enzymes regulate Hes1 stability and neuronal differentiation. FEBS Journal, 2015, 282, 2411-2423.	4.7	47
108	TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation. Journal of Cell Biology, 2015, 210, 737-751.	5.2	46

#	Article	IF	CITATIONS
109	Survival of corticostriatal neurons by Rho/Rho-kinase signaling pathway. Neuroscience Letters, 2016, 630, 45-52.	2.1	46
110	Pathological Progression Induced by the Frontotemporal Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs. Stem Cell Reports, 2019, 13, 684-699.	4.8	46
111	Phosphorylation Signals in Striatal Medium Spiny Neurons. Trends in Pharmacological Sciences, 2016, 37, 858-871.	8.7	44
112	A Proteomic Approach for Comprehensively Screening Substrates of Protein Kinases Such as Rho-Kinase. PLoS ONE, 2010, 5, e8704.	2.5	42
113	Regulatory machinery of UNC-33 Ce-CRMP localization in neurites during neuronal development in Caenorhabditis elegans. Journal of Neurochemistry, 2005, 95, 1629-1641.	3.9	41
114	Neuronal polarization in vivo: Growing in a complex environment. Current Opinion in Neurobiology, 2014, 27, 215-223.	4.2	41
115	Role for Daple in nonâ€canonical Wnt signaling during gastric cancer invasion and metastasis. Cancer Science, 2016, 107, 133-139.	3.9	40
116	Dysfunction of dopamine release in the prefrontal cortex of dysbindin deficient sandy mice: An in vivo microdialysis study. Neuroscience Letters, 2010, 470, 134-138.	2.1	38
117	Migration defects by DISC1 knockdown in C57BL/6, 129X1/SvJ, and ICR strains via in utero gene transfer and virus-mediated RNAi. Biochemical and Biophysical Research Communications, 2010, 400, 631-637.	2.1	38
118	ERK2-Mediated Phosphorylation of Par3 Regulates Neuronal Polarization. Journal of Neuroscience, 2013, 33, 13270-13285.	3.6	38
119	LRRK1 phosphorylation of Rab7 at Ser-72 links trafficking of EGFR-containing endosomes to its effector RILP. Journal of Cell Science, 2019, 132, .	2.0	38
120	Alterations of GABAergic and dopaminergic systems in mutant mice with disruption of exons 2 and 3 of the Disc1 gene. Neurochemistry International, 2014, 74, 74-83.	3.8	37
121	Phosphorylation of Npas4 by MAPK Regulates Reward-Related Gene Expression and Behaviors. Cell Reports, 2019, 29, 3235-3252.e9.	6.4	37
122	TRIM27/MRTF-B-Dependent Integrin \hat{l}^21 Expression Defines Leading Cells in Cancer Cell Collectives. Cell Reports, 2014, 7, 1156-1167.	6.4	36
123	Regulation of cargoâ€selective endocytosis by dynamin 2 <scp>GTP</scp> aseâ€activating protein girdin. EMBO Journal, 2014, 33, 2098-2112.	7.8	34
124	PAR3 and aPKC regulate Golgi organization through CLASP2 phosphorylation to generate cell polarity. Molecular Biology of the Cell, 2015, 26, 751-761.	2.1	34
125	Neuronal Per Arnt Sim (PAS) Domain Protein 4 (NPAS4) Regulates Neurite Outgrowth and Phosphorylation of Synapsin I. Journal of Biological Chemistry, 2013, 288, 2655-2664.	3.4	33
126	Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics. Scientific Reports, 2015, 5, 8694.	3.3	33

#	Article	IF	CITATIONS
127	RhoGEF12 controls cardiac remodeling by integrating G protein– and integrin-dependent signaling cascades. Journal of Experimental Medicine, 2013, 210, 665-673.	8.5	32
128	Balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in striatal medium spiny neurons. Neurochemistry International, 2019, 122, 8-18.	3.8	32
129	Proteomic Screening for Rho-kinase Substrates by Combining Kinase and Phosphatase Inhibitors with 14-3-3ζ Affinity Chromatography. Cell Structure and Function, 2012, 37, 39-48.	1.1	31
130	Activated Cdc42-Bound IQGAP1 Determines the Cellular Endocytic Site. Molecular and Cellular Biology, 2013, 33, 4834-4843.	2.3	28
131	Proteomic analysis reveals novel binding partners of dysbindin, a schizophreniaâ€related protein. Journal of Neurochemistry, 2009, 110, 1567-1574.	3.9	26
132	Identification of Rare, Single-Nucleotide Mutations in NDE1 and Their Contributions to Schizophrenia Susceptibility. Schizophrenia Bulletin, 2015, 41, 744-753.	4.3	26
133	The role of selective transport in neuronal polarization. Developmental Neurobiology, 2011, 71, 445-457.	3.0	25
134	Rho-kinase modulates the function of STEF, a Rac GEF, through its phosphorylation. Biochemical and Biophysical Research Communications, 2007, 355, 788-794.	2.1	24
135	Phosphorylation of CLIP-170 by LRRK1 regulates EGFR trafficking by promoting recruitment of p150Glued to MT plus-ends. Journal of Cell Science, 2015, 128, 385-96.	2.0	24
136	A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology. Cell Structure and Function, 2017, 42, 1-13.	1.1	23
137	Targeting Tyro3 ameliorates a model of PGRN-mutant FTLD-TDP via tau-mediated synaptic pathology. Nature Communications, 2018, 9, 433.	12.8	23
138	PAR3-aPKC regulates Tiam1 by modulating suppressive internal interactions. Molecular Biology of the Cell, 2016, 27, 1511-1523.	2.1	22
139	Identification of focal adhesion kinase (FAK) and phosphatidylinositol 3â€kinase (PI3â€kinase) as Par3 partners by proteomic analysis. Cytoskeleton, 2010, 67, 297-308.	2.0	20
140	Protein Kinase N Promotes Stress-Induced Cardiac Dysfunction Through Phosphorylation of Myocardin-Related Transcription Factor A and Disruption of Its Interaction With Actin. Circulation, 2019, 140, 1737-1752.	1.6	20
141	Protein kinase G signaling disrupts Rac1-dependent focal adhesion assembly in liver specific pericytes. American Journal of Physiology - Cell Physiology, 2011, 301, C66-C74.	4.6	19
142	Analysis of the VAV3 as Candidate Gene for Schizophrenia: Evidences From Voxel-Based Morphometry and Mutation Screening. Schizophrenia Bulletin, 2013, 39, 720-728.	4.3	19
143	PI3K regulates endocytosis after insulin secretion via signaling crosstalk between Arf6 and Rab27a. Journal of Cell Science, 2016, 129, 637-49.	2.0	19
144	Flexible Search for Single-Axon Morphology during Neuronal Spontaneous Polarization. PLoS ONE, 2011, 6, e19034.	2.5	18

#	Article	IF	CITATIONS
145	The CD44/COL17A1 pathway promotes the formation of multilayered, transformed epithelia. Current Biology, 2021, 31, 3086-3097.e7.	3.9	18
146	Impairment of the tyrosine hydroxylase neuronal network in the orbitofrontal cortex of a genetically modified mouse model of schizophrenia. Brain Research, 2011, 1392, 47-53.	2.2	17
147	Phospholipid localization implies microglial morphology and function via Cdc42 <i>in vitro</i> . Glia, 2017, 65, 740-755.	4.9	17
148	Purification and in vitro activity of Rho-associated kinase. Methods in Enzymology, 2000, 325, 149-155.	1.0	16
149	Immunohistochemical evaluation of the GABAergic neuronal system in the prefrontal cortex of a DISC1 knockout mouse model of schizophrenia. Synapse, 2016, 70, 508-518.	1.2	16
150	Roles of IQGAP1 in Cell Polarization and Migration. Novartis Foundation Symposium, 2008, , 92-105.	1.1	15
151	The polymorphism of YWHAE, a gene encoding 14-3-3epsilon, and orbitofrontal sulcogyral pattern in patients with schizophrenia and healthy subjects. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 51, 166-171.	4.8	15
152	Plk1 Phosphorylates CLIP-170 and Regulates Its Binding to Microtubules for Chromosome Alignment. Cell Structure and Function, 2014, 39, 45-59.	1.1	15
153	Developing novel methods to search for substrates of protein kinases such as Rho-kinase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1663-1666.	2.3	15
154	<i>In vivo</i> Gene Transfer of Dominantâ€Negative Rhoâ€Kinase Induces Regression of Coronary Arteriosclerosis in Pigs. Annals of the New York Academy of Sciences, 2001, 947, 407-411.	3.8	14
155	The Polymorphism of YWHAE, a Gene Encoding 14-3-3Epsilon, and Brain Morphology in Schizophrenia: A Voxel-Based Morphometric Study. PLoS ONE, 2014, 9, e103571.	2.5	14
156	Identification of the novel autoantigen candidate Rab GDP dissociation inhibitor alpha in isolated adrenocorticotropin deficiency. Endocrine Journal, 2015, 62, 153-160.	1.6	14
157	In vivo Screening for Substrates of Protein Kinase A Using a Combination of Proteomic Approaches and Pharmacological Modulation of Kinase Activity. Cell Structure and Function, 2015, 40, 1-12.	1.1	14
158	Regulation of Vascular Endothelial Growth Factor Receptor Function in Angiogenesis by Numb and Numb-Like. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1815-1825.	2.4	14
159	Stimulation of Synaptic Vesicle Exocytosis by the Mental Disease Gene DISC1 is Mediated by N-Type Voltage-Gated Calcium Channels. Frontiers in Synaptic Neuroscience, 2016, 8, 15.	2.5	14
160	Protein kinases phosphorylate long disordered regions in intrinsically disordered proteins. Protein Science, 2020, 29, 564-571.	7.6	14
161	Accumbal D2R-medium spiny neurons regulate aversive behaviors through PKA-Rap1 pathway. Neurochemistry International, 2021, 143, 104935.	3.8	14
162	Cyclin D1 controls development of cerebellar granule cell progenitors through phosphorylation and stabilization of ATOH1. EMBO Journal, 2021, 40, e105712.	7.8	14

#	Article	IF	CITATIONS
163	Phosphorylation of Gephyrin in Zebrafish Mauthner Cells Governs Glycine Receptor Clustering and Behavioral Desensitization to Sound. Journal of Neuroscience, 2019, 39, 8988-8997.	3.6	12
164	Advances in defining signaling networks for the establishment of neuronal polarity. Current Opinion in Cell Biology, 2020, 63, 76-87.	5.4	12
165	Phosphoproteomic Analysis Using the WW and FHA Domains as Biological Filters. Cell Structure and Function, 2015, 40, 95-104.	1.1	11
166	A new approach for the direct visualization of the membrane cytoskeleton in cryo-electron microscopy: a comparative study with freeze-etching electron microscopy. Microscopy (Oxford,) Tj ETQq0 0 0 rg	BT1/ G verlo	ck110 Tf 50 6
167	<i>In Vivo</i> Identification of Protein Kinase Substrates by Kinaseâ€Oriented Substrate Screening (KIOSS). Current Protocols in Chemical Biology, 2019, 11, e60.	1.7	10
168	SOCS3–microtubule interaction via CLIP-170 and CLASP2 is critical for modulation of endothelial inflammation and lung injury. Journal of Biological Chemistry, 2021, 296, 100239.	3.4	10
169	Striatal TRPV1 activation by acetaminophen ameliorates dopamine D2 receptor antagonist–induced orofacial dyskinesia. JCI Insight, 2021, 6, .	5.0	10
170	Focused Proteomics Revealed a Novel Rho-kinase Signaling Pathway in the Heart. Cell Structure and Function, 2016, 41, 105-120.	1.1	9
171	Neuropeptide Y neuronal network dysfunction in the frontal lobe of a genetic mouse model of schizophrenia. Neuropeptides, 2017, 62, 27-35.	2.2	9
172	Comprehensive analysis of kinase-oriented phospho-signalling pathways. Journal of Biochemistry, 2019, 165, 301-307.	1.7	9
173	Identification of Protein Kinase Substrates by the Kinaseâ€Interacting Substrate Screening (KISS) Approach. Current Protocols in Cell Biology, 2016, 72, 14.16.1-14.16.12.	2.3	8
174	NMDA receptor antagonist prevents cell death in the hippocampal dentate gyrus induced by hyponatremia accompanying adrenal insufficiency in rats. Experimental Neurology, 2017, 287, 65-74.	4.1	8
175	Dynamic subcellular localization and transcription activity of the SRF cofactor MKL2 in the striatum are regulated by MAPK. Journal of Neurochemistry, 2021, 157, 1774-1788.	3.9	8
176	Microtubuleâ€dependent mechanism of antiâ€inflammatory effect of SOCS1 in endothelial dysfunction and lung injury. FASEB Journal, 2021, 35, e21388.	0.5	8
177	KANPHOS: A Database of Kinase-Associated Neural Protein Phosphorylation in the Brain. Cells, 2022, 11, 47.	4.1	8
178	Role of a tyrosine phosphorylation of SMG-9 in binding of SMG-9 to IQGAP and the NMD complex. Biochemical and Biophysical Research Communications, 2011, 410, 29-33.	2.1	7
179	Preferential targeting of p39-activated Cdk5 to Rac1-induced lamellipodia. Molecular and Cellular Neurosciences, 2014, 61, 34-45.	2.2	7
180	Muscarinic signaling regulates voltageâ€gated potassium channel KCNQ2 phosphorylation in the nucleus accumbens via protein kinase C for aversive learning. Journal of Neurochemistry, 2022, 160, 325-341.	3.9	7

#	Article	IF	CITATIONS
181	Rho–Rho-Kinase Regulates Ras-ERK Signaling Through SynGAP1 for Dendritic Spine Morphology. Neurochemical Research, 2022, 47, 2757-2772.	3.3	7
182	Phosphoproteomic of the acetylcholine pathway enables discovery of the PKC-β-PIX-Rac1-PAK cascade as a stimulatory signal for aversive learning. Molecular Psychiatry, 2022, 27, 3479-3492.	7.9	7
183	Hyaluronan synthesis supports glutamate transporter activity. Journal of Neurochemistry, 2019, 150, 249-263.	3.9	6
184	Dopamine Receptor Dop1R2 Stabilizes Appetitive Olfactory Memory through the Raf/MAPK Pathway in <i>Drosophila</i> . Journal of Neuroscience, 2020, 40, 2935-2942.	3.6	6
185	Catecholaminergic neuronal network dysfunction in the frontal lobe of a genetic mouse model of schizophrenia. Acta Neuropsychiatrica, 2016, 28, 117-123.	2.1	5
186	Proteomic analysis of Girdin-interacting proteins in migrating new neurons in the postnatal mouse brain. Biochemical and Biophysical Research Communications, 2013, 442, 16-21.	2.1	4
187	Identification of the Kinase-Substrate Recognition Interface between MYPT1 and Rho-Kinase. Biomolecules, 2022, 12, 159.	4.0	4
188	IRR is involved in glucose-induced endocytosis after insulin secretion. Journal of Pharmacological Sciences, 2019, 140, 300-304.	2.5	3
189	RhoGEF-mediated vasoconstriction in hypertension. Hypertension Research, 2013, 36, 930-931.	2.7	2
190	Prickle2 and Igsf9b Coordinately Regulate the Cytoarchitecture of the Axon Initial Segment. Cell Structure and Function, 2020, 45, 143-154.	1.1	2
191	Neuronal polarity in 2011. Developmental Neurobiology, 2011, 71, 401-402.	3.0	1
192	GDP-Bound Rab27a Dissociates from the Endocytic Machinery in a Phosphorylation-Dependent Manner after Insulin Secretion. Biological and Pharmaceutical Bulletin, 2019, 42, 1532-1537.	1.4	1
193	CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. , 0, .		1
194	2P021 Structural and functional studies of CLIP-170(Proteins-structure and structure-function) Tj ETQq0 0 0 rgE	ST /Qyerloc	ck 10 Tf 50 22
195	RhoGEF12 controls cardiac remodeling by integrating G protein– and integrin-dependent signaling cascades. Journal of Cell Biology, 2013, 201, i1-i1.	5.2	0
196	Phosphorylation of Shank3 by Rho-Kinase regulates surface translocation of NMDA and AMPA receptors in PSD. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-85.	0.0	0
197	KANPHOS Platform: A comprehensive database for kinase-associated neural phosphorylation signaling. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-104.	0.0	0

198Molecular Mechanism of KCNQ Channels For Reward Behavior. Proceedings for Annual Meeting of
the Japanese Pharmacological Society, 2020, 93, 1-P-011.0.00

#	Article	IF	CITATIONS
199	Phosphorylation of Npas4 by MAPK regulates reward-related gene expression and behaviors. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 1-YIA-26.	0.0	0
200	NMDA-induced activation of the CaMKII-RhoA-Rho-kinase pathway regulates aversive learning. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2022, 95, 1-P-027.	0.0	0