Xuesong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7522619/publications.pdf

Version: 2024-02-01

331670 361022 1,295 48 21 35 h-index citations g-index papers 48 48 48 1828 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	HIV-1 gp120-Induced Endolysosome de-Acidification Leads to Efflux of Endolysosome Iron, and Increases in Mitochondrial Iron and Reactive Oxygen Species. Journal of NeuroImmune Pharmacology, 2022, 17, 181-194.	4.1	21
2	Heterogeneity of ferrous ironâ€containing endolysosomes and effects of endolysosome iron on endolysosome numbers, sizes, and localization patterns. Journal of Neurochemistry, 2022, 161, 69-83.	3.9	11
3	HIVâ€1 Tat endocytosis and retention in endolysosomes affects HIVâ€1 Tatâ€induced LTR transactivation in astrocytes. FASEB Journal, 2022, 36, e22184.	0.5	5
4	Antiretroviral Drugs Promote Amyloidogenesis by De-Acidifying Endolysosomes. Journal of Neurolmmune Pharmacology, 2021, 16, 159-168.	4.1	19
5	Overcoming Chemoresistance: Altering pH of Cellular Compartments by Chloroquine and Hydroxychloroquine. Frontiers in Cell and Developmental Biology, 2021, 9, 627639.	3.7	35
6	Lysosomal Stress Response (LSR): Physiological Importance and Pathological Relevance. Journal of NeuroImmune Pharmacology, 2021, 16, 219-237.	4.1	31
7	Endolysosome iron restricts Tat-mediated HIV-1 LTR transactivation by increasing HIV-1 Tat oligomerization and \hat{l}^2 -catenin expression. Journal of NeuroVirology, 2021, 27, 755-773.	2.1	6
8	SARS-CoV-2 S1 Protein Induces Endolysosome Dysfunction and Neuritic Dystrophy. Frontiers in Cellular Neuroscience, 2021, 15, 777738.	3.7	7
9	Possible Therapeutic Use of Natural Compounds Against COVID-19. Journal of Cellular Signaling, 2021, 2, 63-79.	0.5	11
10	Endolysosome Localization of $\mathrm{ER}\hat{l}_\pm$ Is Involved in the Protective Effect of $17\hat{l}_\pm$ -Estradiol against HIV-1 gp120-Induced Neuronal Injury. Journal of Neuroscience, 2021, 41, 10365-10381.	3.6	4
11	Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiology of Disease, 2020, 134, 104670.	4.4	18
12	Role of Endolysosomes in Severe Acute Respiratory Syndrome Coronavirus-2 Infection and Coronavirus Disease 2019 Pathogenesis: Implications for Potential Treatments. Frontiers in Pharmacology, 2020, 11, 595888.	3. 5	44
13	Janus sword actions of chloroquine and hydroxychloroquine against COVID-19. Cellular Signalling, 2020, 73, 109706.	3.6	27
14	Twoâ€pore channels regulate Tat endolysosome escape and Tatâ€mediated HIVâ€1 LTR transactivation. FASEB Journal, 2020, 34, 4147-4162.	0.5	33
15	Role of Divalent Cations in HIV-1 Replication and Pathogenicity. Viruses, 2020, 12, 471.	3.3	15
16	Readily Releasable Stores of Calcium in Neuronal Endolysosomes: Physiological and Pathophysiological Relevance. Advances in Experimental Medicine and Biology, 2020, 1131, 681-697.	1.6	9
17	Role of endolysosomes and pH in the pathogenesis and treatment of glioblastoma. Cancer Reports, 2019, 2, .	1.4	19
18	BK channels regulate extracellular Tat-mediated HIV-1 LTR transactivation. Scientific Reports, 2019, 9, 12285.	3.3	31

#	Article	IF	CITATIONS
19	HIV-1 gp120 Promotes Lysosomal Exocytosis in Human Schwann Cells. Frontiers in Cellular Neuroscience, 2019, 13, 329.	3.7	27
20	Importance of measuring endolysosome, cytosolic, and extracellular pH in understanding the pathogenesis of and possible treatments for glioblastoma multiforme. Cancer Reports, 2019, 2, .	1.4	18
21	Acidifying Endolysosomes Prevented Low-Density Lipoprotein-Induced Amyloidogenesis. Journal of Alzheimer's Disease, 2019, 67, 393-410.	2.6	19
22	Effects of silica nanoparticles on endolysosome function in primary cultured neurons. Canadian Journal of Physiology and Pharmacology, 2019, 97, 297-305.	1.4	17
23	Apolipoprotein E isoform dependently affects Tat-mediated HIV-1 LTR transactivation. Journal of Neuroinflammation, 2018, 15, 91.	7.2	13
24	Human Immunodeficiency Virus Transactivator of Transcription–Induced Increases in Depression-like Effects Are Linked to Oxidative Stress. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2017, 2, 552-553.	1.5	0
25	Caffeine Blocks HIV-1 Tat-Induced Amyloid Beta Production and Tau Phosphorylation. Journal of Neurolmmune Pharmacology, 2017, 12, 163-170.	4.1	18
26	Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2016, 8, 129.	3 . 4	5
27	Caffeine, Through Adenosine A3 Receptor-Mediated Actions, Suppresses Amyloid-β Protein Precursor Internalization and Amyloid-β Generation. Journal of Alzheimer's Disease, 2015, 47, 73-83.	2.6	27
28	Release of calcium from endolysosomes increases calcium influx through N-type calcium channels: Evidence for acidic store-operated calcium entry in neurons. Cell Calcium, 2015, 58, 617-627.	2.4	30
29	Role of LDL Cholesterol and Endolysosomes in Amyloidogenesis and Alzheimer's Disease. Journal of Neurology & Neurophysiology, 2014, 05, .	0.1	17
30	Cholesterol-enriched diet disrupts the blood-testis barrier in rabbits. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1125-E1130.	3.5	40
31	Role of endolysosomes and cholesterol in the pathogenesis of Alzheimer's disease: Insights into why statins might not provide clinical benefit. Austin Journal of Pharmacology and Therapeutics, 2014, 2, .	0.0	1
32	Amyloid beta accumulation in HIV-1 infected brain: the role of altered cholesterol homeostasis. Clinical Research in HIV/AIDS, 2014, 1 , .	0.0	0
33	Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiology of Aging, 2013, 34, 2370-2378.	3.1	60
34	Role of Endolysosomes in HIV-1 Tat-Induced Neurotoxicity. ASN Neuro, 2012, 4, AN20120017.	2.7	85
35	Ketone bodies protection against HIVâ€1 Tatâ€induced neurotoxicity. Journal of Neurochemistry, 2012, 122, 382-391.	3.9	28
36	Endolysosome involvement in LDL cholesterol-induced Alzheimer's disease-like pathology in primary cultured neurons. Life Sciences, 2012, 91, 1159-1168.	4.3	46

#	Article	IF	CITATIONS
37	Endolysosome Mechanisms Associated with Alzheimer's Disease-like Pathology in Rabbits Ingesting Cholesterol-Enriched Diet. Journal of Alzheimer's Disease, 2011, 22, 1289-1303.	2.6	35
38	Caffeine Protects Against Disruptions of the Blood-Brain Barrier in Animal Models of Alzheimer's and Parkinson's Diseases. Journal of Alzheimer's Disease, 2010, 20, S127-S141.	2.6	106
39	Cholesterolâ€enriched diet induces endosome/lysosome dysfunction in a rabbit model of inclusion body myositis. FASEB Journal, 2009, 23, LB135.	0.5	0
40	Caffeine protects against MPTPâ€induced bloodâ€brain barrier dysfunction in mouse striatum. Journal of Neurochemistry, 2008, 107, 1147-1157.	3.9	155
41	Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. Journal of Neuroinflammation, 2008, 5, 12.	7.2	117
42	Rabbits fed cholesterol-enriched diets exhibit pathological features of inclusion body myositis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R829-R835.	1.8	23
43	Myosin phosphorylation triggers actin polymerization in vascular smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2172-H2177.	3.2	26
44	Stabilization of bloodâ€brain barrier by caffeine in cholesterolâ€fed rabbits. FASEB Journal, 2007, 21, A1168.	0.5	0
45	Effects of chronic portal hypertension on agonist-induced actin polymerization in small mesenteric arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1915-H1921.	3.2	26
46	Myosin triggers actin polymerization in vascular smooth muscle. FASEB Journal, 2006, 20, A406.	0.5	0
47	Effects of chronic portal hypertension on small heat-shock proteins in mesenteric arteries. American Journal of Physiology - Renal Physiology, 2005, 288, G616-G620.	3.4	8
48	Dimethoxycurcumin Acidifies Endolysosomes and Inhibits SARS-CoV-2 Entry. Frontiers in Virology, 0, 2,	1.4	2