
Marc R Gartenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7522458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleoporin TPR promotes tRNA nuclear export and protein synthesis in lung cancer cells. PLoS Genetics, 2021, 17, e1009899.	3.5	8
2	Binding, sliding, and function of cohesin during transcriptional activation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1062-E1071.	7.1	24
3	Determinants of Sir2-Mediated, Silent Chromatin Cohesion. Molecular and Cellular Biology, 2016, 36, 2039-2050.	2.3	4
4	The Nuts and Bolts of Transcriptionally Silent Chromatin in <i>Saccharomyces cerevisiae</i> . Genetics, 2016, 203, 1563-1599.	2.9	120
5	A series of conditional shuttle vectors for targeted genomic integration in budding yeast. FEMS Yeast Research, 2015, 15, .	2.3	10
6	Silencing sounds off. ELife, 2015, 4, .	6.0	2
7	Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast. Genes and Development, 2014, 28, 959-970.	5.9	49
8	Sirtuins mediate cohesion of silenced domains in Saccharomyces cerevisiae. FASEB Journal, 2013, 27, 982.1.	0.5	0
9	Cohesinâ€dependent association of tRNA genes with nuclear pore complexes in budding yeast. FASEB Journal, 2013, 27, 978.2.	0.5	0
10	Palmitoylation in the nucleus. Nucleus, 2012, 3, 251-255.	2.2	4
11	Generation of DNA Circles in Yeast by Inducible Site-Specific Recombination. Methods in Molecular Biology, 2012, 833, 103-113.	0.9	0
12	Palmitoylation controls the dynamics of budding-yeast heterochromatin via the telomere-binding protein Rif1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14572-14577.	7.1	66
13	Targeted Sister Chromatid Cohesion by Sir2. PLoS Genetics, 2011, 7, e1002000.	3.5	23
14	Nucleoporin Mediated Nuclear Positioning and Silencing of HMR. PLoS ONE, 2011, 6, e21923.	2.5	34
15	Life on the edge: telomeres and persistent DNA breaks converge at the nuclear periphery: Figure 1 Genes and Development, 2009, 23, 1027-1031.	5.9	29
16	Heterochromatin and the cohesion of sister chromatids. Chromosome Research, 2009, 17, 229-238.	2.2	34
17	Condensin goes with the family but not with the flow. Genome Biology, 2008, 9, 236.	9.6	3
18	Bypassing Sir2 and O-Acetyl-ADP-Ribose in Transcriptional Silencing. Molecular Cell, 2008, 31, 650-659.	9.7	32

#	Article	IF	CITATIONS
19	Long-Range Communication between the Silencers of <i>HMR</i> . Molecular and Cellular Biology, 2008, 28, 1924-1935.	2.3	58
20	Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast. Genome Research, 2008, 18, 261-271.	5.5	76
21	Multiple Pathways Tether Telomeres and Silent Chromatin at the Nuclear Periphery: Functional Implications for Sir-Mediated Repression. Novartis Foundation Symposium, 2008, , 140-165.	1.1	20
22	A <i>tDNA</i> establishes cohesion of a neighboring silent chromatin domain. Genes and Development, 2007, 21, 2150-2160.	5.9	46
23	Swapping the Gene-Specific and Regional Silencing Specificities of the Hst1 and Sir2 Histone Deacetylases. Molecular and Cellular Biology, 2007, 27, 2466-2475.	2.3	17
24	Targeting of cohesin by transcriptionally silent chromatin. Genes and Development, 2005, 19, 3031-3042.	5.9	102
25	Multiple pathways tether telomeres and silent chromatin at the nuclear periphery: functional implications for sir-mediated repression. Novartis Foundation Symposium, 2005, 264, 140-56; discussion 156-65, 227-30.	1.1	17
26	Sir-Mediated Repression Can Occur Independently of Chromosomal and Subnuclear Contexts. Cell, 2004, 119, 955-967.	28.9	168
27	Esc1, a Nuclear Periphery Protein Required for Sir4-Based Plasmid Anchoring and Partitioning. Molecular and Cellular Biology, 2002, 22, 8292-8301.	2.3	131
28	Establishment of Transcriptional Silencing in the Absence of DNA Replication. Science, 2001, 291, 650-653.	12.6	118
29	Role for Nucleolin/Nsr1 in the Cellular Localization of Topoisomerase I. Journal of Biological Chemistry, 2000, 275, 36181-36188.	3.4	48
30	The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more. Current Opinion in Microbiology, 2000, 3, 132-137.	5.1	93
31	Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes and Development, 2000, 14, 452-463.	5.9	116
32	Formation of Extrachromosomal DNA Rings in Saccharomyces cerevisiae Using Site-Specific Recombination. , 1999, 94, 125-134.		2
33	Isolation of Selected Chromatin Fragments from Yeast by Site-Specific Recombinationin Vivo. Methods, 1999, 17, 104-111.	3.8	10
34	CuringSaccharomyces cerevisiae of the 2 micron plasmid by targeted DNA damage. , 1998, 14, 847-852.		47
35	Persistence of an alternate chromatin structure at silenced loci in the absence of silencers. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5521-5526.	7.1	59
36	A hit-and-run system for targeted genetic manipulations in yeast. Nucleic Acids Research, 1992, 20, 4671-4672.	14.5	49

MARC R GARTENBERG

#	Article	IF	CITATIONS
37	Positive supercoiling of DNA greatly diminishes mRNA synthesis in yeast Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11461-11465.	7.1	93
38	Synthetic DNA bending sequences increase the rate of in vitro transcription initiation at the Escherichia coli lac promoter. Journal of Molecular Biology, 1991, 219, 217-230.	4.2	157
39	Sequence-dependent contribution of distal binding domains to CAP protein-DNA binding affinity. Nucleic Acids Research, 1991, 19, 611-616.	14.5	42
40	Molecular characterization of the GCN4-DNA complex Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6034-6038.	7.1	106
41	DNA sequence determinants of CAP-induced bending and protein binding affinity. Nature, 1988, 333, 824-829.	27.8	297
42	The DNA binding domain and bending angle of E. coli CAP protein. Cell, 1986, 47, 995-1005.	28.9	359