
Nicholas A Brunelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7522034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345, 72-75.	12.6	602
2	Zeolitic Imidazolate Frameworks: Nextâ€Generation Materials for Energyâ€Efficient Gas Separations. ChemSusChem, 2014, 7, 3202-3240.	6.8	235
3	Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis. Chemistry of Materials, 2012, 24, 1930-1936.	6.7	200
4	Tuning Cooperativity by Controlling the Linker Length of Silica-Supported Amines in Catalysis and CO ₂ Capture. Journal of the American Chemical Society, 2012, 134, 13950-13953.	13.7	165
5	Cooperative Catalysis with Acid–Base Bifunctional Mesoporous Silica: Impact of Grafting and Co-condensation Synthesis Methods on Material Structure and Catalytic Properties. Chemistry of Materials, 2012, 24, 2433-2442.	6.7	146
6	Tuning acid–base cooperativity to create next generation silica-supported organocatalysts. Journal of Catalysis, 2013, 308, 60-72.	6.2	125
7	Tunable CO ₂ Adsorbents by Mixed-Linker Synthesis and Postsynthetic Modification of Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry C, 2013, 117, 8198-8207.	3.1	123
8	Thermal, Oxidative and CO ₂ Induced Degradation of Primary Amines Used for CO ₂ Capture: Effect of Alkyl Linker on Stability. Journal of Physical Chemistry C, 2014, 118, 12302-12311.	3.1	103
9	Dynamics of CO ₂ Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design. Industrial & Engineering Chemistry Research, 2012, 51, 15153-15162.	3.7	97
10	Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas. Microporous and Mesoporous Materials, 2014, 192, 43-51.	4.4	95
11	Direct synthesis of single-walled aminoaluminosilicate nanotubes with enhanced molecular adsorption selectivity. Nature Communications, 2014, 5, 3342.	12.8	73
12	Silica-Immobilized Chiral Dirhodium(II) Catalyst for Enantioselective Carbenoid Reactions. Organic Letters, 2013, 15, 6136-6139.	4.6	66
13	Composite Polymer/Oxide Hollow Fiber Contactors: Versatile and Scalable Flow Reactors for Heterogeneous Catalytic Reactions in Organic Synthesis. Angewandte Chemie - International Edition, 2015, 54, 6470-6474.	13.8	50
14	Epoxide ring opening with alcohols using heterogeneous Lewis acid catalysts: Regioselectivity and mechanism. Journal of Catalysis, 2019, 370, 46-54.	6.2	47
15	Selectively converting glucose to fructose using immobilized tertiary amines. Journal of Catalysis, 2017, 353, 205-210.	6.2	41
16	Examining Acid Formation During the Selective Dehydration of Fructose to 5â€Hydroxymethylfurfural in Dimethyl Sulfoxide and Water. ChemSusChem, 2019, 12, 2211-2219.	6.8	35
17	Reaction-dependent heteroatom modification of acid–base catalytic cooperativity in aminosilica materials. Applied Catalysis A: General, 2015, 504, 429-439.	4.3	28
18	High-Yield Synthesis of ZIF-8 Nanoparticles Using Stoichiometric Reactants in a Jet-Mixing Reactor. Industrial & Engineering Chemistry Research, 2017, 56, 10384-10392.	3.7	27

NICHOLAS A BRUNELLI

#	Article	IF	CITATIONS
19	Synthesis and catalytic testing of Lewis acidic nano zeolite Beta for epoxide ring opening with alcohols. Applied Catalysis A: General, 2019, 577, 28-34.	4.3	23
20	Selective production of 5-hydroxymethylfurfural from fructose in the presence of an acid-functionalized SBA-15 catalyst modified with a sulfoxide polymer. Molecular Systems Design and Engineering, 2020, 5, 257-268.	3.4	20
21	Mechanism of Cobalt-Catalyzed Heterodimerization of Acrylates and 1,3-Dienes. A Potential Role of Cationic Cobalt(I) Intermediates. ACS Catalysis, 2020, 10, 4337-4348.	11.2	20
22	Tuning molecular structure of tertiary amine catalysts for glucose isomerization. Journal of Catalysis, 2019, 372, 119-127.	6.2	19
23	Catalytic Regioselective Epoxide Ring Opening with Phenol Using Homogeneous and Supported Analogues of Dimethylaminopyridine. Topics in Catalysis, 2012, 55, 432-438.	2.8	18
24	Synthesis and catalytic testing of Lewis acidic nano-MFI zeolites for the epoxide ring opening reaction with alcohol. Applied Catalysis A: General, 2018, 566, 25-32.	4.3	18
25	Jet-mixing reactor for the production of monodisperse silver nanoparticles using a reduced amount of capping agent. Reaction Chemistry and Engineering, 2019, 4, 1779-1789.	3.7	13
26	Utilizing imogolite nanotubes as a tunable catalytic material for the selective isomerization of glucose to fructose. Catalysis Today, 2019, 323, 69-75.	4.4	11
27	Investigating the Impact of Microporosity of Aminosilica Catalysts in Aldol Condensation Reactions for Biomass Upgrading of 5-Hydroxymethylfurfural and Furfuraldehyde to Fuels. Energy & Fuels, 2021, 35, 14885-14893.	5.1	10
28	Improving Hydrodenitrogenation Catalyst Performance through Analyzing Hydrotreated Vacuum Gas Oil Using Ion Mobility–Mass Spectrometry. Industrial & Engineering Chemistry Research, 2018, 57, 8845-8854.	3.7	6
29	Impact of surface loading on catalytic activity of regular and low micropore SBAâ€15 in the Knoevenagel condensation. AICHE Journal, 2019, 65, e16791.	3.6	6
30	Enhancing hydrophobicity and catalytic activity of nano-Sn-Beta for alcohol ring opening of epoxides through post-synthetic treatment with fluoride. Journal of Catalysis, 2021, 404, 430-439.	6.2	5
31	Investigating the Impact of Synthesis Conditions to Increase the Yield and Tin Incorporation Efficiency for Lewis Acid Nano-Sn-MFI Zeolites. Industrial & Engineering Chemistry Research, 2022, 61, 1977-1984.	3.7	4
32	Scalable synthesis of selective hydrodeoxygenation inverted Pd@TiO2 nanocatalysts. Journal of Flow Chemistry, 2021, 11, 393.	1.9	1