Daniel G Burke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7520428/publications.pdf

Version: 2024-02-01

21 580 12 21 papers citations h-index g-index

21 21 21 758 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Between Laboratory Reproducibility of DNA Extraction from Human Blood and Fresh Frozen Tissue. Journal of Molecular Diagnostics, 2022, 24, 1041-1049.	2.8	1
2	The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clinical Chemistry, 2020, 66, 1012-1029.	3.2	247
3	Droplet Volume Variability and Impact on Digital PCR Copy Number Concentration Measurements. Analytical Chemistry, 2019, 91, 4124-4131.	6.5	29
4	Interlaboratory Reproducibility of Droplet Digital Polymerase Chain Reaction Using a New DNA Reference Material Format. Analytical Chemistry, 2017, 89, 11243-11251.	6.5	10
5	International Comparison of Enumeration-Based Quantification of DNA Copy-Concentration Using Flow Cytometric Counting and Digital Polymerase Chain Reaction. Analytical Chemistry, 2016, 88, 12169-12176.	6.5	32
6	DNA methylation ratio variability may impede clinical application of cancer diagnostic markers. Analytical and Bioanalytical Chemistry, 2014, 406, 6529-6537.	3.7	4
7	Validation of DNA Methylation Biomarkers for Diagnosis of Acute Lymphoblastic Leukemia. Clinical Chemistry, 2014, 60, 995-1003.	3.2	20
8	Digital Polymerase Chain Reaction Measured pUC19 Marker as Calibrant for HPLC Measurement of DNA Quantity. Analytical Chemistry, 2013, 85, 1657-1664.	6.5	22
9	An international comparability study on quantification of total methyl cytosine content. Analytical Biochemistry, 2009, 384, 288-295.	2.4	9
10	Development of a Measurement System for Certifying Ethanol Mass Fraction in Aqueous Solutions. Analytical Chemistry, 2009, 81, 5833-5839.	6.5	3
11	Accurate Measurement of DNA Methylation That Is Traceable to the International System of Units. Analytical Chemistry, 2009, 81, 7294-7301.	6.5	20
12	Complete Equation for the Measurement of Organic Molecules Using Stable Isotope Labeled Internal Standards, Exact Matching, and Mass Spectrometry. Analytical Chemistry, 2008, 80, 5071-5078.	6.5	12
13	An international intercomparison for 19-norandrosterone in human urine: the Comité Consultatif pour la Quantité de Matière (CCQM) Pilot Study CCQM-P68. Accreditation and Quality Assurance, 2007, 12, 459-464.	0.8	4
14	A high-accuracy method of analysis of 19-norandrosterone in human urine as utilised for the international laboratory intercomparison CCQM-P68. Accreditation and Quality Assurance, 2007, 12, 475-482.	0.8	7
15	Manganese Toxicity Effects on Visible Symptoms, Yield, Manganese Levels, and Organic Acid Levels in Tolerant and Sensitive Wheat Cultivars. Crop Science, 1990, 30, 275-280.	1.8	28
16	Identification of desulfoglucosinolates using positive-ion fast atom bombardment mass spectrometry. Journal of Agricultural and Food Chemistry, 1988, 36, 1184-1187.	5.2	2
17	Comparative analysis of fatty acids in pollen and seed of rapeseed. Phytochemistry, 1987, 26, 1895-1897.	2.9	34
18	Quaternary ammonium salts for butylation and mass spectral identification of volatile organic acids. Analytical Chemistry, 1983, 55, 822-826.	6.5	20

Daniel G Burke

#	Article	IF	CITATIONS
19	The characterisation of a novel hydroxindole glucosinolate. Biochemical and Biophysical Research Communications, 1982, 107, 1258-1264.	2.1	41
20	A novel methoxyindole glucosinolate. Biochemical and Biophysical Research Communications, 1982, 107, 1368-1375.	2.1	30
21	Simultaneous determination of diphenylhydantoin, mephobarbital, carbamazepine, phenobarbital and primidone in serum using direct chemical ionization mass spectrometry. Biomedical Mass Spectrometry, 1978, 5, 477-482.	1.9	5