Julia L Shamshina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7520080/publications.pdf

Version: 2024-02-01

191 papers 32,400 citations

68 h-index 178 g-index

203 all docs 203 docs citations

203 times ranked 21071 citing authors

#	Article	IF	Citations
1	Chitin extracted from various biomass sources: It's not the same. Fluid Phase Equilibria, 2022, 552, 113286.	2.5	13
2	lonic liquids for bio-product extraction: How do we get technical feasibility, economic feasibility, and social acceptability?. Fluid Phase Equilibria, 2022, 552, 113273.	2.5	O
3	Cryogenic grinding of cotton fiber cellulose: The effect on physicochemical properties. Carbohydrate Polymers, 2022, 289, 119408.	10.2	5
4	lonic liquids: Implementing objectives of sustainability for the next generation chemical processes and industrial applications. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100625.	5.9	4
5	Deproteinization of Chitin Extracted with the Help of Ionic Liquids. Molecules, 2022, 27, 3983.	3.8	2
6	3D Printing of Cellulose and Chitin from Ionic Liquids for Drug Delivery: A Mini-Review., 2021,, 71-90.		0
7	Ionic Liquids for Transdermal Drug Delivery: Choline Geranate System as a Case Study. , 2021, , 35-50.		1
8	Cellulose nanocrystals from ionic liquids: a critical review. Green Chemistry, 2021, 23, 6205-6222.	9.0	14
9	Tuning the morphological properties of cellulose aerogels: an investigation of salt-mediated preparation. Cellulose, 2021, 28, 7559-7577.	4.9	4
10	Switchable carbamate coagulants to improve recycling ionic liquid from biomass solutions. Green Chemical Engineering, 2021, 2, 384-391.	6.3	9
11	Confusing lons on Purpose: How Many Parent Acid Molecules Can Be Incorporated in a Herbicidal lonic Liquid?. ACS Sustainable Chemistry and Engineering, 2021, 9, 1941-1948.	6.7	11
12	Production and Surface Modification of Cellulose Bioproducts. Polymers, 2021, 13, 3433.	4.5	35
13	Enhanced Dissolution of Chitin Using Acidic Deep Eutectic Solvents: A Sustainable and Simple Approach to Extract Chitin from Crayfish shell Wastes as Alternative Feedstocks. ACS Sustainable Chemistry and Engineering, 2021, 9, 16073-16081.	6.7	23
14	Choosing the right strategy: cryogrinding <i>vs.</i> ball milling – comparing apples to apples. Green Chemistry, 2021, 23, 9646-9657.	9.0	7
15	Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers, 2021, 13, 4344.	4.5	53
16	Agricultural uses of chitin polymers. Environmental Chemistry Letters, 2020, 18, 53-60.	16.2	46
17	Synthesis of Anhydrous Acetates for the Components of Nuclear Fuel Recycling in Dialkylimidazolium Acetate Ionic Liquids. Inorganic Chemistry, 2020, 59, 818-828.	4.0	14
18	Structural Consequences of Halogen Bonding in Dialkylimidazolium: A New Design Strategy for Ionic Liquids Illustrated with the I ₂ Cocrystal and Acetonitrile Solvate of 1,3-Dimethylimidazolium Iodide. Crystal Growth and Design, 2020, 20, 498-505.	3.0	4

#	Article	IF	CITATIONS
19	Crystallographic evidence of Watson–Crick connectivity in the base pair of anionic adenine with thymine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18224-18230.	7.1	6
20	Herbicidal Ionic Liquids: A Promising Future for Old Herbicides? Review on Synthesis, Toxicity, Biodegradation, and Efficacy Studies. Journal of Agricultural and Food Chemistry, 2020, 68, 10456-10488.	5.2	44
21	Farmed Jumbo shrimp molts: an ionic liquid strategy to increase chitin yield per animal while controlling molecular weight. Green Chemistry, 2020, 22, 6001-6007.	9.0	8
22	Chloroaluminate Liquid Clathrates: Is It the Cations or the Anions That Drive the Solubility of Aromatics?. Industrial & Engineering Chemistry Research, 2020, 59, 18419-18424.	3.7	12
23	Are Myths and Preconceptions Preventing Us from Applying Ionic Liquid Forms of Antiviral Medicines to the Current Health Crisis?. International Journal of Molecular Sciences, 2020, 21, 6002.	4.1	15
24	A method for determining the uniquely high molecular weight of chitin extracted from raw shrimp shells using ionic iquids. Green Chemistry, 2020, 22, 3734-3741.	9.0	22
25	Conversion of Quinine Derivatives into Biologically Active Ionic Liquids: Advantages, Multifunctionality, and Perspectives. ACS Sustainable Chemistry and Engineering, 2020, 8, 9263-9267.	6.7	12
26	Quantifying the Mineralization of ¹³ C-Labeled Cations and Anions Reveals Differences in Microbial Biodegradation of Herbicidal Ionic Liquids between Water and Soil. ACS Sustainable Chemistry and Engineering, 2020, 8, 3412-3426.	6.7	11
27	Controlling the Interface between Salts, Solvates, Co-crystals, and Ionic Liquids with Non-stoichiometric Protic Azolium Azolates. Crystal Growth and Design, 2020, 20, 2608-2616.	3.0	5
28	Use of Ionic Liquids in Chitin Biorefinery: A Systematic Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 11.	4.1	27
29	Are Ionic Liquids Enabling Technology? Startup to Scale-Up to Find Out. Green Chemistry and Sustainable Technology, 2020, , 69-85.	0.7	4
30	<i>110th Anniversary: </i> High-Molecular-Weight Chitin and Cellulose Hydrogels from Biomass in Ionic Liquids without Chemical Crosslinking. Industrial & Engineering Chemistry Research, 2019, 58, 19862-19876.	3.7	21
31	Enhanced Acidity and Activity of Aluminum/Gallium-Based Ionic Liquids Resulting from Dynamic Anionic Speciation. ACS Catalysis, 2019, 9, 9789-9793.	11.2	5
32	Chitin in ionic liquids: historical insights into the polymer's dissolution and isolation. A review. Green Chemistry, 2019, 21, 3974-3993.	9.0	104
33	Applications of Chitin in Agriculture. Sustainable Agriculture Reviews, 2019, , 125-146.	1.1	15
34	Insights into Ionic Liquid/Aromatic Systems from NMR Spectroscopy: How Water Affects Solubility and Intermolecular Interactions. ChemPlusChem, 2019, 84, 872-881.	2.8	5
35	Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbents by the structural support effect of lignin. Cellulose, 2019, 26, 4005-4019.	4.9	27
36	Advances in Functional Chitin Materials: A Review. ACS Sustainable Chemistry and Engineering, 2019, 7, 6444-6457.	6.7	185

#	Article	IF	CITATIONS
37	8. Recent advances in the electrospinning of biopolymers. , 2019, , 189-216.		1
38	Azolate Anions in Ionic Liquids: Promising and Underâ€Utilized Components of the Ionic Liquid Toolbox. Chemistry - A European Journal, 2019, 25, 2127-2140.	3.3	13
39	Active Pharmaceutical Ingredient Ionic Liquid: A New Platform for the Pharmaceutical Industry. , 2019, , $1\text{-}14$.		2
40	Chitin as a Resource for Eco-Friendly Bioplastics. , 2019, , 1-8.		3
41	Scaling-Up Ionic Liquid-Based Technologies: How Much Do We Care About Their Toxicity? Prima Facie Information on 1-Ethyl-3-Methylimidazolium Acetate. Toxicological Sciences, 2018, 161, 249-265.	3.1	47
42	Nanodarts, nanoblades, and nanospikes: Mechano-bactericidal nanostructures and where to find them. Advances in Colloid and Interface Science, 2018, 252, 55-68.	14.7	109
43	Exploring the role of ionic liquids to tune the polymorphic outcome of organic compounds. Chemical Science, 2018, 9, 1510-1520.	7.4	30
44	Can Melting Point Trends Help Us Develop New Tools To Control the Crystal Packing of Weakly Interacting lons?. Crystal Growth and Design, 2018, 18, 597-601.	3.0	11
45	Is "choline and geranate―an ionic liquid or deep eutectic solvent system?. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10999.	7.1	26
46	Double Salt Ionic Liquids for Lignin Hydrolysis: One Cation for Catalyst and Solvent Anions. ECS Transactions, 2018, 86, 215-229.	0.5	3
47	Polyoxometalate catalysts for biomass dissolution: understanding and design. Physical Sciences Reviews, 2018, 3, .	0.8	0
48	In Search of Stronger/Cheaper Chitin Nanofibers through Electrospinning of Chitin–Cellulose Composites Using an Ionic Liquid Platform. ACS Sustainable Chemistry and Engineering, 2018, 6, 14713-14722.	6.7	36
49	Porphyrinic Ionic Liquid Dyes: Synthesis and Characterization. ChemistryOpen, 2018, 7, 659-663.	1.9	5
50	Mixed metal double salt ionic liquids comprised of [HN ₂₂₂] ₂ [ZnCl ₄] and AlCl ₃ provide tunable Lewis acid catalysts related to the ionic environment. Dalton Transactions, 2018, 47, 7795-7803.	3.3	27
51	Elucidating the triethylammonium acetate system: Is it molecular or is it ionic?. Journal of Molecular Liquids, 2018, 269, 126-131.	4.9	24
52	Ionic Liquids. , 2018, , 218-218.		7
53	Enzymatic hydrolysis of ionic liquid-extracted chitin. Carbohydrate Polymers, 2018, 199, 228-235.	10.2	32
54	Advances in Processing Chitin as a Promising Biomaterial from Ionic Liquids. Advances in Biochemical Engineering/Biotechnology, 2018, 168, 177-198.	1,1	9

#	Article	IF	CITATIONS
55	lonic Liquids as Fragrance Precursors: Smart Delivery Systems for Volatile Compounds. Industrial & Lamp; Engineering Chemistry Research, 2018, 57, 16069-16076.	3.7	19
56	lonic Liquid Platform for Spinning Composite Chitin–Poly(lactic acid) Fibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 10241-10251.	6.7	39
57	Singlet Oxygen Production and Tunable Optical Properties of Deacetylated Chitin-Porphyrin Crosslinked Films. Biomacromolecules, 2018, 19, 3291-3300.	5.4	20
58	Double Salt Ionic Liquids for Lignin Hydrolysis: One Cation for Catalyst and Solvent Anions. ECS Meeting Abstracts, 2018, , .	0.0	1
59	Polyethylene glycol derivatization of the non-active ion in active pharmaceutical ingredient ionic liquids enhances transdermal delivery. New Journal of Chemistry, 2017, 41, 1499-1508.	2.8	34
60	Crystal structure of Zn(ZnCl ₄) ₂ (Cho) ₂ : the transformation of ions to neutral species in a deep eutectic system. Chemical Communications, 2017, 53, 5449-5452.	4.1	6
61	Transdermal Bioavailability in Rats of Lidocaine in the Forms of Ionic Liquids, Salts, and Deep Eutectic. ACS Medicinal Chemistry Letters, 2017, 8, 498-503.	2.8	64
62	Facile Preparation of Starch-Based Electroconductive Films with Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2017, 5, 5457-5467.	6.7	58
63	Electrospinning Biopolymers from Ionic Liquids Requires Control of Different Solution Properties than Volatile Organic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 5512-5519.	6.7	44
64	Versatility and remarkable hypergolicity of exo-6, exo-9 imidazole-substituted nido-decaborane. Chemical Communications, 2017, 53, 7736-7739.	4.1	29
65	Metal carbonate complexes formed through the capture of ambient O2 and CO2 by elemental metals in 1-methylimidazole: molecular Cu(CO3)(Melm)3 and polymeric M(CO3)(Melm)2·2H2O (M = Co, Zn). Dalton Transactions, 2017, 46, 8920-8923.	3.3	6
66	Two Herbicides in a Single Compound: Double Salt Herbicidal Ionic Liquids Exemplified with Glyphosate, Dicamba, and MCPA. ACS Sustainable Chemistry and Engineering, 2017, 5, 6261-6273.	6.7	62
67	Dissolution of Starch with Aqueous Ionic Liquid under Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3737-3741.	6.7	47
68	"Practical―Electrospinning of Biopolymers in Ionic Liquids. ChemSusChem, 2017, 10, 106-111.	6.8	43
69	Porous Chitin Microbeads for More Sustainable Cosmetics. ACS Sustainable Chemistry and Engineering, 2017, 5, 11660-11667.	6.7	57
70	Translational Research from Academia to Industry: Following the Pathway of George Washington Carver. ACS Symposium Series, 2017, , 17-33.	0.5	10
71	Double salt ionic liquids based on 1-ethyl-3-methylimidazolium acetate and hydroxyl-functionalized ammonium acetates: strong effects of weak interactions. Physical Chemistry Chemical Physics, 2017, 19, 26934-26943.	2.8	20
72	Separate mechanisms of ion oligomerization tune the physicochemical properties of n-butylammonium acetate: cation-base clusters vs. anion-acid dimers. Physical Chemistry Chemical Physics, 2017, 19, 25544-25554.	2.8	18

#	Article	IF	Citations
73	Measuring the Purity of Chitin with a Clean, Quantitative Solid-State NMR Method. ACS Sustainable Chemistry and Engineering, 2017, 5, 8011-8016.	6.7	35
74	lonic liquids for consumer products: Dissolution, characterization, and controlled release of fragrance compositions. Fluid Phase Equilibria, 2017, 450, 51-56.	2.5	11
75	Acyclovir as an Ionic Liquid Cation or Anion Can Improve Aqueous Solubility. ACS Omega, 2017, 2, 3483-3493.	3.5	36
76	Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation. Biotechnology for Biofuels, 2017, 10, 154.	6.2	72
77	A platform for more sustainable chitin films from an ionic liquid process. Green Chemistry, 2017, 19, 117-126.	9.0	7 5
78	Ionic Liquids for Sustainable Chemical Processes. , 2017, , 645-651.		1
79	Structural and Theoretical Study of Salts of the [B ₉ H ₁₄] ^{â^'} lon: Isolation of Multiple Isomers and Implications for Energy Storage. ChemPlusChem, 2016, 81, 922-925.	2.8	8
80	Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol. Carbohydrate Polymers, 2016, 146, 67-79.	10.2	49
81	Pulping of Crustacean Waste Using Ionic Liquids: To Extract or Not To Extract. ACS Sustainable Chemistry and Engineering, 2016, 4, 6072-6081.	6.7	7 3
82	Preparation and comparison of bulk and membrane hydrogels based on Kraft- and ionic-liquid-isolated lignins. Green Chemistry, 2016, 18, 5607-5620.	9.0	56
83	Comparison of Hydrogels Prepared with Ionic-Liquid-Isolated vs Commercial Chitin and Cellulose. ACS Sustainable Chemistry and Engineering, 2016, 4, 471-480.	6.7	100
84	Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemistry, 2016, 18, 53-75.	9.0	522
85	Eliminating The Need For Chemistry. Chemical & Engineering News, 2015, 93, 42-43.	0.1	7
86	Nonstoichiometric, Protic Azolium Azolate Ionic Liquids Provide Unique Environments for Nâ€Donor Coordination Chemistry. Chemistry - A European Journal, 2015, 21, 17196-17199.	3.3	11
87	Chemistry: Develop ionic liquid drugs. Nature, 2015, 528, 188-189.	27.8	176
88	Metsulfuron-Methyl-Based Herbicidal Ionic Liquids. Journal of Agricultural and Food Chemistry, 2015, 63, 3357-3366.	5.2	57
89	Ionic Fluids Containing Both Strongly and Weakly Interacting Ions of the Same Charge Have Unique Ionic and Chemical Environments as a Function of Ion Concentration. ChemPhysChem, 2015, 16, 993-1002.	2.1	27
90	Characteristics of starch-based films with different amylose contents plasticised by 1-ethyl-3-methylimidazolium acetate. Carbohydrate Polymers, 2015, 122, 160-168.	10.2	50

#	Article	IF	Citations
91	Understanding the structural disorganization of starch in water–ionic liquid solutions. Physical Chemistry Chemical Physics, 2015, 17, 13860-13871.	2.8	73
92	Electrical conductivity in two mixed-valence liquids. Physical Chemistry Chemical Physics, 2015, 17, 14107-14114.	2.8	7
93	Controlling the Formation of Ionicâ€Liquidâ€based Aqueous Biphasic Systems by Changing the Hydrogenâ€Bonding Ability of Polyethylene Glycol End Groups. ChemPhysChem, 2015, 16, 2219-2225.	2.1	41
94	Isolation of Uranyl Dicyanamide Complexes from N-Donor Ionic Liquids. Inorganic Chemistry, 2015, 54, 10323-10334.	4.0	12
95	Sulfasalazine in ionic liquid form with improved solubility and exposure. MedChemComm, 2015, 6, 1837-1841.	3.4	59
96	Overcoming the problems of solid state drug formulations with ionic liquids. Therapeutic Delivery, 2014, 5, 489-491.	2.2	27
97	Oxygen Enhances Polyoxometalate-based Catalytic Dissolution and Delignification of Woody Biomass in Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2014, 2, 2859-2865.	6.7	26
98	Glyphosate-Based Herbicidal Ionic Liquids with Increased Efficacy. ACS Sustainable Chemistry and Engineering, 2014, 2, 2845-2851.	6.7	57
99	Dissolution of Biomass Using Ionic Liquids. Structure and Bonding, 2014, , 79-105.	1.0	22
100	Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan. Green Chemistry, 2014, 16, 1828-1836.	9.0	121
101	Mixing ionic liquids – "simple mixtures―or "double salts�. Green Chemistry, 2014, 16, 2051.	9.0	289
102	Simultaneous membrane transport of two active pharmaceutical ingredients by charge assisted hydrogen bond complex formation. Chemical Science, 2014, 5, 3449.	7.4	106
103	Physical Insight into Switchgrass Dissolution in Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate. ACS Sustainable Chemistry and Engineering, 2014, 2, 1264-1269.	6.7	19
104	Chitin–calcium alginate composite fibers for wound care dressings spun from ionic liquid solution. Journal of Materials Chemistry B, 2014, 2, 3924-3936.	5.8	109
105	Facile pulping of lignocellulosic biomass using choline acetate. Bioresource Technology, 2014, 164, 394-401.	9.6	53
106	Characteristics of starch-based films plasticised by glycerol and by the ionic liquid 1-ethyl-3-methylimidazolium acetate: A comparative study. Carbohydrate Polymers, 2014, 111, 841-848.	10.2	69
107	lonic liquids in drug delivery. Expert Opinion on Drug Delivery, 2013, 10, 1367-1381.	5.0	186
108	Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chemistry, 2013, 15, 601.	9.0	145

#	Article	IF	CITATIONS
109	Understanding the Effects of Ionicity in Salts, Solvates, Co-Crystals, Ionic Co-Crystals, and Ionic Liquids, Rather than Nomenclature, Is Critical to Understanding Their Behavior. Crystal Growth and Design, 2013, 13, 965-975.	3.0	115
110	Effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on the phase transition of starch: Dissolution or gelatinization?. Carbohydrate Polymers, 2013, 94, 520-530.	10.2	74
111	Prodrug ionic liquids: functionalizing neutral active pharmaceutical ingredients to take advantage of the ionic liquid form. MedChemComm, 2013, 4, 559.	3.4	78
112	Azolium azolates from reactions of neutral azoles with 1,3-dimethyl-imidazolium-2-carboxylate, 1,2,3-trimethyl-imidazolium hydrogen carbonate, and N,N-dimethyl-pyrrolidinium hydrogen carbonate. New Journal of Chemistry, 2013, 37, 1461.	2.8	12
113	Drug specific, tuning of an ionic liquid's hydrophilic–lipophilic balance to improve water solubility of poorly soluble active pharmaceutical ingredients. New Journal of Chemistry, 2013, 37, 2196.	2.8	108
114	lonic liquid forms of the herbicide dicamba with increased efficacy and reduced volatility. Green Chemistry, 2013, 15, 2110.	9.0	112
115	Hydrophobic vs. hydrophilic ionic liquid separations strategies in support of continuous pharmaceutical manufacturing. RSC Advances, 2013, 3, 10019.	3.6	27
116	1-Ethyl-3-methylimidazolium hexafluorophosphate: from ionic liquid prototype to antitype. Chemical Communications, 2013, 49, 6011.	4.1	24
117	Procainium Acetate Versus Procainium Acetate Dihydrate: Irreversible Crystallization of a Room-Temperature Active Pharmaceutical-Ingredient Ionic Liquid upon Hydration. Crystal Growth and Design, 2013, 13, 3290-3293.	3.0	15
118	A "green―industrial revolution: Using chitin towards transformative technologies. Pure and Applied Chemistry, 2013, 85, 1693-1701.	1.9	23
119	Coagulation of Chitin and Cellulose from 1â€Ethylâ€3â€methylimidazolium Acetate Ionicâ€Liquid Solutions Using Carbon Dioxide. Angewandte Chemie - International Edition, 2013, 52, 12350-12353.	13.8	56
120	Advanced Biopolymer Composite Materials from Ionic Liquid Solutions. ACS Symposium Series, 2012, , 167-187.	0.5	5
121	Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquids via $\hat{\bf l}$ -2 coordination. RSC Advances, 2012, 2, 8526.	3.6	102
122	Tuning azolium azolate ionic liquids to promote surface interactions with titanium nanoparticles leading to increased passivation and colloidal stability. Physical Chemistry Chemical Physics, 2012, 14, 13194.	2.8	8
123	EPR Study of the Astaxanthin <i>n</i> li>-Octanoic Acid Monoester and Diester Radicals on Silicaâ€"Alumina. Journal of Physical Chemistry B, 2012, 116, 13200-13210.	2.6	15
124	Pharmaceutically active ionic liquids with solids handling, enhanced thermal stability, and fast release. Chemical Communications, 2012, 48, 5422.	4.1	104
125	Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure and Applied Chemistry, 2012, 84, 745-754.	1.9	26
126	Synthesis, limitations, and thermal properties of energetically-substituted, protonated imidazolium picrate and nitrate salts and further comparison with their methylated analogs. New Journal of Chemistry, 2012, 36, 702-722.	2.8	37

#	Article	IF	Citations
127	Reactivity of N-cyanoalkyl-substituted imidazolium halide salts by simple elution through an azide anion exchange resin. Science China Chemistry, 2012, 55, 1683-1687.	8.2	2
128	Zinc-assisted synthesis of imidazolium-tetrazolate bi-heterocyclic zwitterions with variable alkyl bridge length. Science China Chemistry, 2012, 55, 1620-1626.	8.2	1
129	Anhydrous Caffeine Hydrochloride and Its Hydration. Crystal Growth and Design, 2012, 12, 4658-4662.	3.0	9
130	Polymorphs, Salts, and Cocrystals: What's in a Name?. Crystal Growth and Design, 2012, 12, 2147-2152.	3.0	767
131	Stereoselective synthesis of cis- or trans-2,4-disubstituted butyrolactones from Wynberg lactone. Tetrahedron, 2012, 68, 5396-5405.	1.9	13
132	Ionic liquid processing of cellulose. Chemical Society Reviews, 2012, 41, 1519.	38.1	1,165
133	lonic liquids and fragrances – direct isolation of orange essential oil. Green Chemistry, 2011, 13, 1997.	9.0	76
134	Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green Chemistry, 2011, 13, 1158.	9.0	64
135	Synthesis of N-cyanoalkyl-functionalized imidazolium nitrate and dicyanamide ionic liquids with a comparison of their thermal properties for energetic applications. New Journal of Chemistry, 2011, 35, 1701.	2.8	27
136	Toxic on purpose: ionic liquid fungicides as combinatorial crop protecting agents. Green Chemistry, 2011, 13, 2344.	9.0	45
137	Peculiar Behavior of Azolium Azolate Energetic Ionic Liquids. Journal of Physical Chemistry Letters, 2011, 2, 2571-2576.	4.6	7
138	Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chemistry, 2011, 13, 2038.	9.0	203
139	Liquid forms of pharmaceutical co-crystals: exploring the boundaries of salt formation. Chemical Communications, 2011, 47, 2267-2269.	4.1	120
140	Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?. Chemical Communications, 2011, 47, 1405-1421.	4.1	391
141	Use of Polyoxometalate Catalysts in Ionic Liquids to Enhance the Dissolution and Delignification of Woody Biomass. ChemSusChem, 2011, 4, 65-73.	6.8	71
142	Demonstration of Chemisorption of Carbon Dioxide in 1,3â€Dialkylimidazolium Acetate Ionic Liquids. Angewandte Chemie - International Edition, 2011, 50, 12024-12026.	13.8	349
143	Crystalline vs. Ionic Liquid Salt Forms of Active Pharmaceutical Ingredients: A Position Paper. Pharmaceutical Research, 2010, 27, 521-526.	3.5	307
144	Crystallization of Uranyl Salts from Dialkylimidazolium Ionic Liquids or Their Precursors. European Journal of Inorganic Chemistry, 2010, 2010, 2760-2767.	2.0	24

#	Article	IF	CITATIONS
145	Ionic Liquids Based on Azolate Anions. Chemistry - A European Journal, 2010, 16, 1572-1584.	3.3	44
146	A general design platform for ionic liquid ions based on bridged multi-heterocycles with flexible symmetry and charge. Chemical Communications, 2010, 46, 3544.	4.1	13
147	Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chemistry, 2010, 12, 968.	9.0	364
148	Catalytic ignition of ionic liquids for propellant applications. Chemical Communications, 2010, 46, 8965.	4.1	54
149	In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Physical Chemistry Chemical Physics, 2010, 12, 2011.	2.8	183
150	New hydrogen carbonate precursors for efficient and byproduct-free syntheses of ionic liquids based on 1,2,3-trimethylimidazolium and N,N-dimethylpyrrolidinium cores. Green Chemistry, 2010, 12, 491.	9.0	27
151	Confused ionic liquid ions—a "liquification―and dosage strategy for pharmaceutically active salts. Chemical Communications, 2010, 46, 1215.	4.1	116
152	Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry, 2009, 11, 646.	9.0	906
153	Ionic liquids with dual biological function: sweet and anti-microbial, hydrophobic quaternary ammonium-based salts. New Journal of Chemistry, 2009, 33, 26-33.	2.8	173
154	Direct, Atom Efficient, and Halideâ€Free Syntheses of Azolium Azolate Energetic Ionic Liquids and Their Eutectic Mixtures, and Method for Determining Eutectic Composition. Chemistry - A European Journal, 2008, 14, 11314-11319.	3.3	30
155	Solvation of Carbohydrates in <i>N</i> , <i>N</i> ꀲ-Dialkylimidazolium Ionic Liquids: A Multinuclear NMR Spectroscopy Study. Journal of Physical Chemistry B, 2008, 112, 11071-11078.	2.6	185
156	Ionic Liquid-Based Preparation of Celluloseâ°'Dendrimer Films as Solid Supports for Enzyme Immobilization. Biomacromolecules, 2008, 9, 381-387.	5.4	92
157	Magnetite-embedded cellulose fibers prepared from ionic liquid. Journal of Materials Chemistry, 2008, 18, 283-290.	6.7	124
158	Ionic Liquids Then and Now: From Solvents to Materials to Active Pharmaceutical Ingredients. Bulletin of the Chemical Society of Japan, 2007, 80, 2262-2269.	3.2	315
159	Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry, 2007, 9, 63-69.	9.0	752
160	Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt–salt ABS). Green Chemistry, 2007, 9, 177-183.	9.0	301
161	Solid-State Analysis of Low-Melting 1,3-Dialkylimidazolium Hexafluorophosphate Salts (Ionic Liquids) by Combined X-ray Crystallographic and Computational Analyses. Crystal Growth and Design, 2007, 7, 1106-1114.	3.0	97
162	lonic liquids via reaction of the zwitterionic 1,3-dimethylimidazolium-2-carboxylate with protic acids. Overcoming synthetic limitations and establishing new halide free protocols for the formation of ILs. Green Chemistry, 2007, 9, 90-98.	9.0	93

#	Article	IF	Citations
163	Interactions of 1-Methylimidazole with UO2(CH3CO2)2and UO2(NO3)2:Â Structural, Spectroscopic, and Theoretical Evidence for Imidazole Binding to the Uranyl Ion. Journal of the American Chemical Society, 2007, 129, 526-536.	13.7	75
164	The third evolution of ionic liquids: active pharmaceutical ingredients. New Journal of Chemistry, 2007, 31, 1429.	2.8	766
165	An Intermediate for the Clean Synthesis of Ionic Liquids: Isolation and Crystal Structure of 1,3-Dimethylimidazolium Hydrogen Carbonate Monohydrate. Chemistry - A European Journal, 2007, 13, 5207-5212.	3.3	58
166	Choline-Derivative-Based Ionic Liquids. Chemistry - A European Journal, 2007, 13, 6817-6827.	3. 3	151
167	Convergent synthesis of potent COX-2 inhibitor inotilone. Tetrahedron Letters, 2007, 48, 3767-3769.	1.4	32
168	The Second Evolution of Ionic Liquids: From Solvents and Separations to Advanced Materials—Energetic Examples from the Ionic Liquid Cookbook. Accounts of Chemical Research, 2007, 40, 1182-1192.	15.6	454
169	Combustible ionic liquids by design: is laboratory safety another ionic liquid myth?. Chemical Communications, 2006, , 2554.	4.1	301
170	Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chemistry, 2006, 8, 798.	9.0	146
171	Practical Approach to α- or γ-Heterosubstituted Enoic Acids. Organic Letters, 2006, 8, 5881-5884.	4.6	31
172	Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chemical Communications, 2006, , 1271.	4.1	613
173	Strategies toward the design of energetic ionic liquids: nitro- and nitrile-substituted N,N′-dialkylimidazolium salts. New Journal of Chemistry, 2006, 30, 349.	2.8	62
174	Approaches to crystallization from ionic liquids: complex solvents–complex results, or, a strategy for controlled formation of new supramolecular architectures?. Chemical Communications, 2006, , 4767-4779.	4.1	165
175	In Search of Ionic Liquids Incorporating Azolate Anions. Chemistry - A European Journal, 2006, 12, 4630-4641.	3.3	76
176	1-Butyl-3-methylimidazolium 3,5-dinitro-1,2,4-triazolate: a novel ionic liquid containing a rigid, planar energetic anion. Chemical Communications, 2005, , 868.	4.1	99
177	lonic Liquid-Reconstituted Cellulose Composites as Solid Support Matrices for Biocatalyst Immobilization. Biomacromolecules, 2005, 6, 2497-2502.	5.4	152
178	High-resolution $13\mathrm{C}$ NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chemical Communications, 2005 , , 1557 .	4.1	298
179	The first general synthesis of 3-iodo-4-R-furazans. Heteroatom Chemistry, 2004, 15, 199-207.	0.7	20
180	The First General Synthesis of 3-lodo-4-R-furazans ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
181	Production of Bioactive Cellulose Films Reconstituted from Ionic Liquids. Biomacromolecules, 2004, 5, 1379-1384.	5.4	342
182	CHEMISTRY: Ionic LiquidsSolvents of the Future?. Science, 2003, 302, 792-793.	12.6	3,722
183	lonic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chemistry, 2003, 5, 361.	9.0	902
184	1,3-Dimethylimidazolium-2-carboxylate: the unexpected synthesis of an ionic liquid precursor and carbene-CO2 adductElectronic supplementary information (ESI) available: experimental data for 1,3-dimethylimidazolium-2-carboxylate. Supplemental crystal structure data. ORTEP, hydrogen bonding and packing diagrams. See http://www.rsc.org./suppdata/cc/b2/b211519k/. Chemical Communications, 2003, , 28-29.	4.1	241
185	Mercury(ii) partitioning from aqueous solutions with a new, hydrophobic ethylene-glycol functionalized bis-imidazolium ionic liquidThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany, 13–16th October 2002 Green Chemistry, 2003, 5, 129-135.	9.0	130
186	Application of ionic liquids as plasticizers for poly(methyl methacrylate). Chemical Communications, 2002, , 1370-1371.	4.1	233
187	Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chemistry, 2002, 4, 407-413.	9.0	508
188	Dissolution of Cellose with Ionic Liquids. Journal of the American Chemical Society, 2002, 124, 4974-4975.	13.7	4,294
189	Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 2001, 3, 156-164.	9.0	3,466
190	Room temperature ionic liquids as novel media for â€~clean' liquid–liquid extraction. Chemical Communications, 1998, , 1765-1766.	4.1	1,975
191	Review of foam applications on cotton textiles. Textile Reseach Journal, 0, , 004051752211074.	2.2	1