
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7519511/publications.pdf Version: 2024-02-01

IFFEDEV M COOD

#	Article	IF	CITATIONS
1	Molecular Evolution across Mouse Spermatogenesis. Molecular Biology and Evolution, 2022, 39, .	8.9	18
2	Unraveling patterns of disrupted gene expression across a complex tissue. Evolution; International Journal of Organic Evolution, 2022, 76, 275-291.	2.3	14
3	Stage-specific disruption of X chromosome expression during spermatogenesis in sterile house mouse hybrids. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	8
4	The genomic basis of high-elevation adaptation in wild house mice (<i>Mus musculus domesticus</i>) from South America. Genetics, 2022, 220, .	2.9	7
5	The Evolution of Widespread Recombination Suppression on the Dwarf Hamster (<i>Phodopus</i>) X Chromosome. Genome Biology and Evolution, 2022, 14, .	2.5	2
6	Genomic resolution of cryptic species diversity in chipmunks. Evolution; International Journal of Organic Evolution, 2022, 76, 2004-2019.	2.3	2
7	The Legacy of Recurrent Introgression during the Radiation of Hares. Systematic Biology, 2021, 70, 593-607.	5.6	47
8	Diversification, Introgression, and Rampant Cytonuclear Discordance in Rocky Mountains Chipmunks (Sciuridae: <i>Tamias</i>). Systematic Biology, 2021, 70, 908-921.	5.6	20
9	X chromosome-dependent disruption of placental regulatory networks in hybrid dwarf hamsters. Genetics, 2021, 218, .	2.9	10
10	The population genetics of crypsis in vertebrates: recent insights from mice, hares, and lizards. Heredity, 2020, 124, 1-14.	2.6	24
11	An Annotated Draft Genome of the Mountain Hare (Lepus timidus). Genome Biology and Evolution, 2020, 12, 3656-3662.	2.5	13
12	The Origin and Spread of Locally Adaptive Seasonal Camouflage in Snowshoe Hares. American Naturalist, 2020, 196, 316-332.	2.1	29
13	Transcriptomic regulation of seasonal coat color change in hares. Ecology and Evolution, 2020, 10, 1180-1192.	1.9	16
14	Convergent evolution of seasonal camouflage in response to reduced snow cover across the snowshoe hare range*. Evolution; International Journal of Organic Evolution, 2020, 74, 2033-2045.	2.3	19
15	Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. PLoS Genetics, 2019, 15, e1008119.	3.5	70
16	Automated Nuclear Cartography Reveals Conserved Sperm Chromosome Territory Localization across 2 Million Years of Mouse Evolution. Genes, 2019, 10, 109.	2.4	7
17	A high-throughput method for unbiased quantitation and categorization of nuclear morphology. Biology of Reproduction, 2019, 100, 1250-1260.	2.7	38
18	The Evolution of Polymorphic Hybrid Incompatibilities in House Mice. Genetics, 2018, 209, 845-859.	2.9	50

#	Article	IF	CITATIONS
19	Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science, 2018, 359, 1033-1036.	12.6	91
20	Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world?. Biological Reviews, 2018, 93, 1478-1498.	10.4	109
21	The genomic basis of environmental adaptation in house mice. PLoS Genetics, 2018, 14, e1007672.	3.5	65
22	Spermatogenesis and the Evolution of Mammalian Sex Chromosomes. Trends in Genetics, 2018, 34, 722-732.	6.7	47
23	Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science, 2018, 360, 1355-1358.	12.6	234
24	The composite regulatory basis of the large X-effect in mouse speciation. Molecular Biology and Evolution, 2017, 34, msw243.	8.9	59
25	The transcriptional landscape of seasonal coat colour moult in the snowshoe hare. Molecular Ecology, 2017, 26, 4173-4185.	3.9	27
26	Whole exome sequencing of wild-derived inbred strains of mice improves power to link phenotype and genotype. Mammalian Genome, 2017, 28, 416-425.	2.2	25
27	Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest. Nature Communications, 2017, 8, 1593.	12.8	59
28	Phylogenomic Insights into Mouse Evolution Using a Pseudoreference Approach. Genome Biology and Evolution, 2017, 9, 726-739.	2.5	47
29	Comparative Phylogenomic Assessment of Mitochondrial Introgression among Several Species of Chipmunks (TAMIAS). Genome Biology and Evolution, 2016, 9, evw254.	2.5	12
30	Targeted capture in evolutionary and ecological genomics. Molecular Ecology, 2016, 25, 185-202.	3.9	295
31	Genomic imprinting, disrupted placental expression, and speciation. Evolution; International Journal of Organic Evolution, 2016, 70, 2690-2703.	2.3	32
32	Contrasting Levels of Molecular Evolution on the Mouse X Chromosome. Genetics, 2016, 203, 1841-1857.	2.9	32
33	Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 2016, 17, 81-92.	16.3	1,169
34	Negligible nuclear introgression despite complete mitochondrial capture between two species of chipmunks. Evolution; International Journal of Organic Evolution, 2015, 69, 1961-1972.	2.3	88
35	Parentâ€ofâ€origin growth effects and the evolution of hybrid inviability in dwarf hamsters. Evolution; International Journal of Organic Evolution, 2014, 68, 3134-3148.	2.3	37
36	The Genomic Architecture of Population Divergence between Subspecies of the European Rabbit. PLoS Genetics, 2014, 10, e1003519.	3.5	82

#	Article	IF	CITATIONS
37	Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 2014, 345, 1074-1079.	12.6	343
38	Unlocking the vault: nextâ€generation museum population genomics. Molecular Ecology, 2013, 22, 6018-6032.	3.9	329
39	Meiotic Sex Chromosome Inactivation Is Disrupted in Sterile Hybrid Male House Mice. Genetics, 2013, 193, 819-828.	2.9	86
40	Comparative Population Genomics of the Ejaculate in Humans and the Great Apes. Molecular Biology and Evolution, 2013, 30, 964-976.	8.9	40
41	The Conflict within and the Escalating War between the Sex Chromosomes. PLoS Genetics, 2012, 8, e1002955.	3.5	14
42	Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics, 2012, 13, 403.	2.8	253
43	The bonobo genome compared with the chimpanzee and human genomes. Nature, 2012, 486, 527-531.	27.8	445
44	The Contribution of the Y Chromosome to Hybrid Male Sterility in House Mice. Genetics, 2012, 191, 1271-1281.	2.9	45
45	Bonobos Fall within the Genomic Variation of Chimpanzees. PLoS ONE, 2011, 6, e21605.	2.5	57
46	On Characterizing Adaptive Events Unique to Modern Humans. Genome Biology and Evolution, 2011, 3, 791-798.	2.5	15
47	Extraordinary Sequence Divergence at Tsga8, an X-linked Gene Involved in Mouse Spermiogenesis. Molecular Biology and Evolution, 2011, 28, 1675-1686.	8.9	22
48	Targeted Investigation of the Neandertal Genome by Array-Based Sequence Capture. Science, 2010, 328, 723-725.	12.6	255
49	A Draft Sequence of the Neandertal Genome. Science, 2010, 328, 710-722.	12.6	3,588
50	The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature, 2010, 464, 894-897.	27.8	659
51	Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 2010, 468, 1053-1060.	27.8	1,537
52	Widespread Over-Expression of the X Chromosome in Sterile F1 Hybrid Mice. PLoS Genetics, 2010, 6, e1001148.	3.5	111
53	Targeted Retrieval and Analysis of Five Neandertal mtDNA Genomes. Science, 2009, 325, 318-321.	12.6	456
54	Ancient hybridization and mitochondrial capture between two species of chipmunks. Molecular Ecology, 2008, 17, 1313-1327.	3.9	162

#	Article	IF	CITATIONS
55	A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing. Cell, 2008, 134, 416-426.	28.9	503
56	A Complex Genetic Basis to X-Linked Hybrid Male Sterility Between Two Species of House Mice. Genetics, 2008, 179, 2213-2228.	2.9	143
57	Adaptive Evolution of Proteins Secreted during Sperm Maturation: An Analysis of the Mouse Epididymal Transcriptome. Molecular Biology and Evolution, 2008, 25, 383-392.	8.9	49
58	ASYMMETRY AND POLYMORPHISM OF HYBRID MALE STERILITY DURING THE EARLY STAGES OF SPECIATION IN HOUSE MICE. Evolution; International Journal of Organic Evolution, 2007, 62, 071115145922007-???.	2.3	139
59	Human Adaptive Evolution at Myostatin (GDF8), a Regulator of Muscle Growth. American Journal of Human Genetics, 2006, 79, 1089-1097.	6.2	41
60	Multiple paternity in wildâ€caught Drosophila mojavensis. Molecular Ecology, 2006, 15, 2253-2260.	3.9	16
61	Adaptive Protein Evolution and Regulatory Divergence in Drosophila. Molecular Biology and Evolution, 2006, 23, 1101-1103.	8.9	23
62	INVESTIGATING THE EVOLUTIONARY HISTORY OF THE PACIFIC NORTHWEST MESIC FOREST ECOSYSTEM: HYPOTHESIS TESTING WITHIN A COMPARATIVE PHYLOGEOGRAPHIC FRAMEWORK. Evolution; International Journal of Organic Evolution, 2005, 59, 1639-1652.	2.3	183
63	Transposable Element Orientation Bias in the Drosophila melanogaster Genome. Journal of Molecular Evolution, 2005, 61, 733-741.	1.8	18
64	Rates of Protein Evolution Are Positively Correlated with Developmental Timing of Expression During Mouse Spermatogenesis. Molecular Biology and Evolution, 2005, 22, 1044-1052.	8.9	94
65	Molecular Correlates of Genes Exhibiting RNAi Phenotypes in Caenorhabditis elegans. Genome Research, 2003, 13, 2651-2657.	5.5	28
66	Phylogeography of the red-tailed chipmunk (Tamias ruficaudus), a northern Rocky Mountain endemic. Molecular Ecology, 2001, 10, 2683-2695.	3.9	57