
David Zelený

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/75190/publications.pdf Version: 2024-02-01

DAVID ZELENÃ1/2

#	Article	IF	CITATIONS
1	Secondary succession on landslides in submontane forests of central Taiwan: Environmental drivers and restoration strategies. Applied Vegetation Science, 2022, 25, .	1.9	0
2	Insularity promotes plant persistence strategies in edaphic island systems. Global Ecology and Biogeography, 2022, 31, 753-764.	5.8	10
3	Climate and soil differentially affect species, trait and diversity patterns of woody overstorey and fern understorey in a subtropical forest along an elevation gradient in Taiwan. Journal of Vegetation Science, 2022, 33, .	2.2	3
4	Sticking around: Plant persistence strategies on edaphic islands. Diversity and Distributions, 2022, 28, 1850-1862.	4.1	7
5	What defines insularity for plants in edaphic islands?. Ecography, 2021, 44, 1249-1258.	4.5	17
6	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
7	Pladias Database of the Czech flora and vegetation. Preslia, 2021, 93, 1-87.	2.8	86
8	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
9	Tracing the signs of local dispersal in the temperate forest understorey using spatially structured vegetation data. Journal of Vegetation Science, 2020, 31, 84-94.	2.2	1
10	Quantifying sample completeness and comparing diversities among assemblages. Ecological Research, 2020, 35, 292-314.	1.5	141
11	Ecological specialization indices for species of the Czech flora. Preslia, 2019, 91, 93-116.	2.8	16
12	Which results of the standard test for communityâ€weighted mean approach are too optimistic?. Journal of Vegetation Science, 2018, 29, 953-966.	2.2	69
13	Ellenberg-type indicator values for the Czech flora. Preslia, 2018, 90, 83-103.	2.8	107
14	Structural bias in aggregated speciesâ€level variables driven by repeated species coâ€occurrences: a pervasive problem in community and assemblage data. Journal of Biogeography, 2017, 44, 1199-1211.	3.0	45
15	Contrasting patterns of fine-scale herb layer species composition in temperate forests. Acta Oecologica, 2017, 80, 24-31.	1.1	12
16	Management of semi-natural grasslands benefiting both plant and insect diversity: The importance of heterogeneity and tradition. Agriculture, Ecosystems and Environment, 2017, 246, 243-252.	5.3	86
17	Regional differences in soil pH niche among dry grassland plants in Eurasia. Oikos, 2017, 126, 660-670.	2.7	17
18	Measuring ecological specialization along a natural stress gradient using a set of complementary niche breadth indices. Journal of Vegetation Science, 2016, 27, 892-903.	2.2	27

David Zelený

#	Article	IF	CITATIONS
19	Towards the spatial coherence of biogeographical regionalizations at subcontinental and landscape scales. Journal of Biogeography, 2016, 43, 2489-2501.	3.0	7
20	Measuring size and composition of species pools: a comparison of dark diversity estimates. Ecology and Evolution, 2016, 6, 4088-4101.	1.9	31
21	Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Clobal Ecology and Biogeography, 2015, 24, 786-794.	5.8	66
22	<i>Chamaecyparis</i> montane cloud forest in Taiwan: ecology and vegetation classification. Ecological Research, 2015, 30, 771-791.	1.5	25
23	Land snail richness and abundance along a sharp ecological gradient at two sampling scales: disentangling relationships. Journal of Molluscan Studies, 2014, 80, 256-264.	1.2	7
24	High Plant Diversity of Grasslands in a Landscape Context: A Comparison of Contrasting Regions in Central Europe. Folia Geobotanica, 2014, 49, 117-135.	0.9	27
25	Natural habitats matter: Determinants of spatial pattern in the composition of animal assemblages of the Czech Republic. Acta Oecologica, 2014, 59, 7-17.	1.1	6
26	Patterns of Land Snail Assemblages along a Fine-Scale Moisture Gradient. Malacologia, 2013, 56, 31-42.	0.4	21
27	Classification of <scp>T</scp> aiwan forest vegetation. Applied Vegetation Science, 2013, 16, 698-719.	1.9	106
28	Better environmental data may reverse conclusions about niche―and dispersalâ€based processes in community assembly. Ecology, 2013, 94, 2145-2151.	3.2	89
29	Distribution of habitat specialists in semiâ€natural grasslands. Journal of Vegetation Science, 2013, 24, 616-627.	2.2	16
30	Classification of the High-Mountain Coniferous Forests in Taiwan. Folia Geobotanica, 2012, 47, 373-401.	0.9	8
31	Estimation of herbaceous biomass from species composition and cover. Applied Vegetation Science, 2012, 15, 580-589.	1.9	45
32	Too good to be true: pitfalls of using mean <scp>E</scp> llenberg indicator values in vegetation analyses. Journal of Vegetation Science, 2012, 23, 419-431.	2.2	162
33	High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia. Journal of Vegetation Science, 2012, 23, 605-616.	2.2	37
34	The species richness–productivity relationship in the herb layer of European deciduous forests. Global Ecology and Biogeography, 2012, 21, 657-667.	5.8	46
35	Environmental factors influencing herb layer productivity in Central European oak forests: insights from soil and biomass analyses and a phytometer experiment. Plant and Soil, 2011, 342, 183-194.	3.7	32
36	Imputation of environmental variables for vegetation plots based on compositional similarity. Journal of Vegetation Science, 2010, 21, 88-95.	2.2	12

David Zelený

#	Article	IF	CITATIONS
37	Floristic diversity of an eastern Mediterranean dwarf shrubland: the importance of soil pH. Journal of Vegetation Science, 2010, 21, 1125-1137.	2.2	31
38	Pattern of local plant species richness along a gradient of landscape topographical heterogeneity: result of spatial mass effect or environmental shift?. Ecography, 2010, 33, 578-589.	4.5	21
39	Coâ€occurrence based assessment of species habitat specialization is affected by the size of species pool: reply to Fridley <i>etÂal</i> . (2007). Journal of Ecology, 2009, 97, 10-17.	4.0	31
40	Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. Journal of Vegetation Science, 2009, 20, 596-602.	2.2	233
41	Shifts in the ecological behaviour of plant species between two distant regions: evidence from the base richness gradient in mires. Journal of Biogeography, 2008, 35, 282-294.	3.0	25
42	Testing the species pool hypothesis for mire vegetation: exploring the influence of pH specialists and habitat history. Oikos, 2007, 116, 1311-1322.	2.7	37
43	Testing the Species pool hypothesis for mire vegetation: exploring the influence of pH specialists and habitat history. Oikos, 2007, 116, 1311-1322.	2.7	1