Gwyn W Gould

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/751778/publications.pdf Version: 2024-02-01

CWAN W COLLD

#	Article	IF	CITATIONS
1	Knockout of syntaxin-4 in 3T3-L1 adipocytes reveals new insight into GLUT4 trafficking and adiponectin secretion. Journal of Cell Science, 2022, 135, .	2.0	6
2	Large scale, single-cell FRET-based glucose uptake measurements within heterogeneous populations. IScience, 2022, 25, 104023.	4.1	5
3	EFR3 and phosphatidylinositol 4-kinase IIIα regulate insulin-stimulated glucose transport and GLUT4 dispersal in 3T3-L1 adipocytes. Bioscience Reports, 2022, 42, .	2.4	5
4	Regulatory effects of protein S-acylation on insulin secretion and insulin action. Open Biology, 2021, 11, 210017.	3.6	9
5	Run for your life: can exercise be used to effectively target GLUT4 in diabetic cardiac disease?. PeerJ, 2021, 9, e11485.	2.0	4
6	Anillin/Mid1p interacts with the ESCRT-associated protein Vps4p and mitotic kinases to regulate cytokinesis in fission yeast. Cell Cycle, 2021, 20, 1845-1860.	2.6	5
7	OP6â€Investigating spatio-temporal dynamics of CLUT4 dispersal in cardiomyocytes. , 2020, , .		Ο
8	CHC22 clathrin mediates traffic from early secretory compartments for human GLUT4 pathway biogenesis. Journal of Cell Biology, 2020, 219, .	5.2	32
9	Building GLUT4 Vesicles: CHC22 Clathrin's Human Touch. Trends in Cell Biology, 2020, 30, 705-719.	7.9	28
10	Insulin stimulated GLUT4 translocation – Size is not everything!. Current Opinion in Cell Biology, 2020, 65, 28-34.	5.4	39
11	Characterisation of GLUT4 trafficking in HeLa cells: comparable kinetics and orthologous trafficking mechanisms to 3T3-L1 adipocytes. PeerJ, 2020, 8, e8751.	2.0	16
12	The Human-Specific and Smooth Muscle Cell-Enriched LncRNA SMILR Promotes Proliferation by Regulating Mitotic CENPF mRNA and Drives Cell-Cycle Progression Which Can Be Targeted to Limit Vascular Remodeling. Circulation Research, 2019, 125, 535-551.	4.5	100
13	GLUT4 expression and glucose transport in human induced pluripotent stem cell-derived cardiomyocytes. PLoS ONE, 2019, 14, e0217885.	2.5	18
14	The deubiquitinating enzyme USP25 binds tankyrase and regulates trafficking of the facilitative glucose transporter GLUT4 in adipocytes. Scientific Reports, 2019, 9, 4710.	3.3	16
15	Cardiac SNARE Expression in Health and Disease. Frontiers in Endocrinology, 2019, 10, 881.	3.5	9
16	Genetic and Cytological Methods to Study ESCRT Cell Cycle Function in Fission Yeast. Methods in Molecular Biology, 2019, 1998, 239-250.	0.9	2
17	Conflicting evidence for the role of <scp>JNK</scp> as a target in breast cancer cell proliferation: Comparisons between pharmacological inhibition and selective shRNA knockdown approaches. Pharmacology Research and Perspectives, 2018, 6, e00376.	2.4	6
18	Proximity Ligation Assay to Study the GLUT4 Membrane Trafficking Machinery. Methods in Molecular Biology, 2018, 1713, 217-227.	0.9	2

#	Article	IF	CITATIONS
19	SNARE phosphorylation: a control mechanism for insulin-stimulated glucose transport and other regulated exocytic events. Biochemical Society Transactions, 2017, 45, 1271-1277.	3.4	13
20	The Trypanosome Exocyst: A Conserved Structure Revealing a New Role in Endocytosis. PLoS Pathogens, 2017, 13, e1006063.	4.7	27
21	Protein kinase C phosphorylates AMP-activated protein kinase α1 Ser487. Biochemical Journal, 2016, 473, 4681-4697.	3.7	57
22	Preparation of a Total Membrane Fraction from 3T3-L1 Adipocytes. Cold Spring Harbor Protocols, 2016, 2016, 2016, pdb.prot083675.	0.3	2
23	16K Fractionation of 3T3-L1 Adipocytes to Produce a Crude GLUT4-Containing Vesicle Fraction. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot083683.	0.3	3
24	lodixanol Gradient Centrifugation to Separate Components of the Low-Density Membrane Fraction from 3T3-L1 Adipocytes. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot083709.	0.3	3
25	Complete Membrane Fractionation of 3T3-L1 Adipocytes. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot083691.	0.3	6
26	Animal cell cytokinesis: The role of dynamic changes in the plasma membrane proteome and lipidome. Seminars in Cell and Developmental Biology, 2016, 53, 64-73.	5.0	23
27	Alternate routes to the cell surface underpin insulin-regulated membrane trafficking of GLUT4. Journal of Cell Science, 2015, 128, 2423-9.	2.0	26
28	Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking. Molecular Biology of the Cell, 2015, 26, 530-536.	2.1	22
29	mVps45 knockdown selectively modulates VAMP expression in 3T3-L1 adipocytes. Communicative and Integrative Biology, 2015, 8, e1026494.	1.4	3
30	A Complex Network of Interactions between Mitotic Kinases, Phosphatases and ESCRT Proteins Regulates Septation and Membrane Trafficking in S. pombe. PLoS ONE, 2014, 9, e111789.	2.5	13
31	ESCRT Function in Cytokinesis: Location, Dynamics and Regulation by Mitotic Kinases. International Journal of Molecular Sciences, 2014, 15, 21723-21739.	4.1	31
32	Studies of the regulated assembly of SNARE complexes in adipocytes. Biochemical Society Transactions, 2014, 42, 1396-1400.	3.4	7
33	Insulin Stimulates Syntaxin4 SNARE Complex Assembly via a Novel Regulatory Mechanism. Molecular and Cellular Biology, 2014, 34, 1271-1279.	2.3	33
34	Exocyst proteins in cytokinesis. Communicative and Integrative Biology, 2013, 6, e27635.	1.4	23
35	Posttranslational Modifications of GLUT4 Affect Its Subcellular Localization and Translocation. International Journal of Molecular Sciences, 2013, 14, 9963-9978.	4.1	33
36	Syntaxin 16 is a master recruitment factor for cytokinesis. Molecular Biology of the Cell, 2013, 24, 3663-3674.	2.1	36

#	Article	IF	CITATIONS
37	Sorting of GLUT4 into its insulin-sensitive store requires the Sec1/Munc18 protein mVps45. Molecular Biology of the Cell, 2013, 24, 2389-2397.	2.1	25
38	Novel Role for Proteinase-activated Receptor 2 (PAR2) in Membrane Trafficking of Proteinase-activated Receptor 4 (PAR4). Journal of Biological Chemistry, 2012, 287, 16656-16669.	3.4	38
39	Rab11-FIP3 is a cell cycle-regulated phosphoprotein. BMC Cell Biology, 2012, 13, 4.	3.0	13
40	Vesicle trafficking and membrane remodelling in cytokinesis. Biochemical Journal, 2011, 437, 13-24.	3.7	79
41	IKKε: A Kinase at the Intersection of Signaling and Membrane Traffic. Science Signaling, 2011, 4, pe30.	3.6	16
42	SNARE Proteins Underpin Insulinâ€Regulated GLUT4 Traffic. Traffic, 2011, 12, 657-664.	2.7	49
43	Tyrosine phosphorylation of Munc18c on residue 521 abrogates binding to Syntaxin 4. BMC Biochemistry, 2011, 12, 19.	4.4	26
44	The regulation of abscission by multi-protein complexes. Journal of Cell Science, 2011, 124, 3199-3207.	2.0	41
45	New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nature Reviews Molecular Cell Biology, 2009, 10, 287-292.	37.0	192
46	Characterization of two distinct binding modes between syntaxin 4 and Munc18c. Biochemical Journal, 2009, 419, 655-660.	3.7	23
47	Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO Journal, 2008, 27, 1791-1803.	7.8	84
48	Breaking up is hard to do – membrane traffic in cytokinesis. Journal of Cell Science, 2008, 121, 1569-1576.	2.0	92
49	Negative Regulation of Syntaxin4/SNAP-23/VAMP2-Mediated Membrane Fusion by Munc18c In Vitro. PLoS ONE, 2008, 3, e4074.	2.5	37
50	Role of endosomal Rab GTPases in cytokinesis. European Journal of Cell Biology, 2007, 86, 25-35.	3.6	71
51	ACRP30 is secreted from 3T3-L1 adipocytes via a Rab11-dependent pathway. Biochemical and Biophysical Research Communications, 2006, 342, 1361-1367.	2.1	29
52	Syntaxin 16 controls the intracellular sequestration of GLUT4 in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 2006, 347, 433-438.	2.1	45
53	Regulation of caveolar endocytosis by syntaxin 6-dependent delivery of membrane components to the cell surface. Nature Cell Biology, 2006, 8, 317-328.	10.3	84
54	Membrane traffic in cytokinesis. Biochemical Society Transactions, 2005, 33, 1290.	3.4	18

#	Article	IF	CITATIONS
55	Rab11-FIP3 and FIP4 interact with Arf6 and the Exocyst to control membrane traffic in cytokinesis. EMBO Journal, 2005, 24, 3389-3399.	7.8	288
56	Reduced insulin-stimulated GLUT4 bioavailability in stroke-prone spontaneously hypertensive rats. Diabetologia, 2005, 48, 539-546.	6.3	4
57	Mammalian Exocyst Complex Is Required for the Docking Step of InsulinVesicle Exocytosis. Journal of Biological Chemistry, 2005, 280, 25565-25570.	3.4	62
58	The FIP3-Rab11 Protein Complex Regulates Recycling Endosome Targeting to the Cleavage Furrow during Late Cytokinesis. Molecular Biology of the Cell, 2005, 16, 849-860.	2.1	284
59	Evidence for a Role of the Exocyst in Insulin-stimulated Glut4 Trafficking in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2005, 280, 3812-3816.	3.4	43
60	Lipid Raft Association of SNARE Proteins Regulates Exocytosis in PC12 Cells. Journal of Biological Chemistry, 2005, 280, 19449-19453.	3.4	119
61	The SNARE Proteins SNAP-25 and SNAP-23 Display Different Affinities for Lipid Rafts in PC12 Cells. Journal of Biological Chemistry, 2005, 280, 1236-1240.	3.4	90
62	Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection. Insect Biochemistry and Molecular Biology, 2005, 35, 741-754.	2.7	108
63	Fructose transport and metabolism in adipose tissue of Zucker rats: Diminished GLUT5 activity during obesity and insulin resistance. Molecular and Cellular Biochemistry, 2004, 261, 23-33.	3.1	41
64	Syntaxin 6 Regulates Glut4 Trafficking in 3T3-L1 Adipocytes. Molecular Biology of the Cell, 2003, 14, 2946-2958.	2.1	88
65	Direct Activation of AMP-activated Protein Kinase Stimulates Nitric-oxide Synthesis in Human Aortic Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 31629-31639.	3.4	312
66	Arfophilins Are Dual Arf/Rab 11 Binding Proteins That Regulate Recycling Endosome Distribution and Are Related toDrosophilaNuclear Fallout. Molecular Biology of the Cell, 2003, 14, 2908-2920.	2.1	138
67	Actin cytoskeleton remodeling during early Drosophila furrow formation requires recycling endosomal components Nuclear-fallout and Rab11. Journal of Cell Biology, 2003, 163, 143-154.	5.2	179
68	Decreased insulin sensitivity during dietary sodium restriction is not mediated by effects of angiotensin II on insulin action. Clinical Science, 2003, 105, 187-194.	4.3	30
69	A Specific Elevation in Tissue Plasminogen Activator Antigen in Women with Polycystic Ovarian Syndrome. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3287-3290.	3.6	62
70	Altered Vascular Function in Young Women with Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 742-746.	3.6	220
71	The Vesicle- and Target-SNARE Proteins That Mediate Glut4 Vesicle Fusion Are Localized in Detergent-insoluble Lipid Rafts Present on Distinct Intracellular Membranes. Journal of Biological Chemistry, 2002, 277, 49750-49754.	3.4	118
72	Altered Vascular Function in Young Women with Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 742-746.	3.6	53

#	Article	IF	CITATIONS
73	CD36 deficiency and insulin resistance. Lancet, The, 2001, 358, 242-243.	13.7	9
74	Low Grade Chronic Inflammation in Women with Polycystic Ovarian Syndrome. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2453-2455.	3.6	546
75	Regulation of glucose transport in aortic smooth muscle cells by cAMP and cGMP. Biochemical Journal, 2001, 353, 513.	3.7	2
76	Skeletal Muscle of Stroke-Prone Spontaneously Hypertensive Rats Exhibits Reduced Insulin-Stimulated Glucose Transport and Elevated Levels of Caveolin and Flotillin. Diabetes, 2001, 50, 2148-2156.	0.6	24
77	SNARE proteins are highly enriched in lipid rafts in PC12 cells: Implications for the spatial control of exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5619-5624.	7.1	385
78	Low Grade Chronic Inflammation in Women with Polycystic Ovarian Syndrome. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2453-2455.	3.6	119
79	The cytosolic C-terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal. Biochemical Journal, 2000, 350, 99.	3.7	23
80	Insulin action on the ovary. Reproductive Medicine Review, 2000, 8, 25-39.	0.3	0
81	Adipsin and the Glucose Transporter GLUT4 Traffic to the Cell Surface via Independent Pathways in Adipocytes. Traffic, 2000, 1, 141-151.	2.7	43
82	The long term health consequences of polycystic ovary syndrome. BJOG: an International Journal of Obstetrics and Gynaecology, 2000, 107, 1327-1338.	2.3	25
83	Long-term insulin treatment of 3T3-L1 adipocytes results in mis-targeting of GLUT4: implications for insulin-stimulated glucose transport. Diabetologia, 2000, 43, 1273-1281.	6.3	32
84	Sex hormones induce insulin resistance in 3T3-L1 adipocytes by reducing cellular content of IRS proteins. Diabetologia, 2000, 43, 1374-1380.	6.3	35
85	Cd36 and molecular mechanisms of insulin resistance in the stroke-prone spontaneously hypertensive rat Diabetes, 2000, 49, 2222-2226.	0.6	58
86	5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes, 2000, 49, 1649-1656.	0.6	109
87	The cytosolic C-terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal. Biochemical Journal, 2000, 350, 99-107.	3.7	84
88	v- and t-SNARE protein expression in models of insulin resistance: normalization of glycemia by rosiglitazone treatment corrects overexpression of cellubrevin, vesicle-associated membrane protein-2, and syntaxin 4 in skeletal muscle of Zucker diabetic fatty rats. Diabetes, 2000, 49, 618-625.	0.6	40
89	P2Y Receptor-mediated Inhibition of Tumor Necrosis Factor α-stimulated Stress-activated Protein Kinase Activity in EAhy926 Endothelial Cells. Journal of Biological Chemistry, 2000, 275, 13243-13249.	3.4	24
90	Quantification of SNARE Protein Levels in 3T3-L1 Adipocytes: Implications for Insulin-Stimulated Glucose Transport. Biochemical and Biophysical Research Communications, 2000, 270, 841-845.	2.1	30

#	Article	IF	CITATIONS
91	Polycystic ovaries. Lancet, The, 2000, 355, 68-69.	13.7	0
92	Identification of further important residues within the Glut4 carboxy-terminal tail which regulate subcellular trafficking. FEBS Letters, 2000, 481, 261-265.	2.8	10
93	Differential Regulation of Secretory Compartments Containing the Insulin-responsive Glucose Transporter 4 in 3T3-L1 Adipocytes. Molecular Biology of the Cell, 1999, 10, 3675-3688.	2.1	72
94	Evidence for a Role for ADP-ribosylation Factor 6 in Insulin-stimulated Glucose Transporter-4 (GLUT4) Trafficking in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1999, 274, 17619-17625.	3.4	42
95	Involvement of Mitogen-Activated Protein Kinase Homologues in the Regulation of Lipopolysaccharide-Mediated Induction of Cyclo-oxygenase-2 but not Nitric Oxide Synthase in RAW 264.7 Macrophages. Cellular Signalling, 1999, 11, 491-497.	3.6	100
96	Structure and function of facultative sugar transporters. Current Opinion in Cell Biology, 1999, 11, 496-502.	5.4	67
97	Analysis of Amino and Carboxy Terminal GLUT-4 Targeting Motifs in 3T3-L1 Adipocytes Using an Endosomal Ablation Technique. Biochemistry, 1999, 38, 1456-1462.	2.5	38
98	3T3-L1 Adipocytes Express Two Isoforms of Phospholipase D in Distinct Subcellular Compartments. Biochemical and Biophysical Research Communications, 1999, 254, 734-738.	2.1	14
99	Visualization of distinct patterns of subcellular redistribution of the thyrotropin-releasing hormone receptor-1 and Gqα /G11α induced by agonist stimulation. Biochemical Journal, 1999, 340, 529-538.	3.7	36
100	Trafficking of Glut4–Green Fluorescent Protein chimaeras in 3T3-L1 adipocytes suggests distinct internalization mechanisms regulating cell surface Glut4 levels. Biochemical Journal, 1999, 344, 535-543.	3.7	18
101	Visualization of distinct patterns of subcellular redistribution of the thyrotropin-releasing hormone receptor-1 and Gqα /G11α induced by agonist stimulation. Biochemical Journal, 1999, 340, 529.	3.7	9
102	Trafficking of Glut4‒Green Fluorescent Protein chimaeras in 3T3-L1 adipocytes suggests distinct internalization mechanisms regulating cell surface Glut4 levels. Biochemical Journal, 1999, 344, 535.	3.7	9
103	The Mammalian Facilitative Glucose Transporter (GLUT) Family. , 1999, 12, 201-228.		12
104	Tumour Necrosis Factor Stimulates Stress-Activated Protein Kinases and the Inhibition of DNA Synthesis in Cultures of Bovine Aortic Endothelial Cells. Cellular Signalling, 1998, 10, 473-480.	3.6	20
105	Sugar transporters from bacteria, parasites and mammals: structure–activity relationships. Trends in Biochemical Sciences, 1998, 23, 476-481.	7.5	118
106	Vesicle-associated Membrane Protein 2 Plays a Specific Role in the Insulin-dependent Trafficking of the Facilitative Glucose Transporter GLUT4 in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1998, 273, 1444-1452.	3.4	132
107	QLS Motif in Transmembrane Helix VII of the Glucose Transporter Family Interacts with the C-1 Position ofd-Glucose and Is Involved in Substrate Selection at the Exofacial Binding Siteâ€. Biochemistry, 1998, 37, 1322-1326.	2.5	115
108	Hypoxic Stimulation of the Stress-activated Protein Kinases in Pulmonary Artery Fibroblasts. American Journal of Respiratory and Critical Care Medicine, 1998, 158, 958-962.	5.6	52

#	ARTICLE	IF	CITATIONS
109	Real Time Visualization of Agonist-mediated Redistribution and Internalization of a Green Fluorescent Protein-tagged Form of the Thyrotropin-releasing Hormone Receptor. Journal of Biological Chemistry, 1998, 273, 24000-24008.	3.4	57
110	Should sperm donors be paid? A survey of the attitudes of the general public. Human Reproduction, 1998, 13, 771-775.	0.9	15
111	Mutational analysis of the carboxy-terminal phosphorylation site of GLUT-4 in 3T3-L1 adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E412-E422.	3.5	9
112	Evidence for <i>ras</i> - and <i>rho</i> -dependent pathways in the regulation of glucose transport by growth factors. Biochemical Society Transactions, 1997, 25, 472S-472S.	3.4	1
113	Characterization of the intracellular signalling pathways that underlie growth-factor-stimulated glucose transport in Xenopus oocytes: evidence for ras- and rho-dependent pathways of phosphatidylinositol 3-kinase activation. Biochemical Journal, 1997, 325, 637-643.	3.7	11
114	GLUT4 vesicle dynamics in living 3T3 L1 adipocytes visualized with green-fluorescent protein. Biochemical Journal, 1997, 327, 637-642.	3.7	84
115	Compartment-ablation studies of GLUT4 distribution in adipocytes: evidence for multiple intracellular pools. Biochemical Society Transactions, 1997, 25, 974-977.	3.4	11
116	COMPARTMENT ABLATION APPROACHES FOR THE STUDY OF THE TRAFFICKING AND TARGETING OF GLUT4. Biochemical Society Transactions, 1997, 25, 460S-460S.	3.4	0
117	Real-time analysis of GLUT4 trafficking in single living cells using green-fluorescent protein. Biochemical Society Transactions, 1997, 25, 460S-460S.	3.4	Ο
118	Characterisation of proteins associated with the GLUT4 intracellular compartment. Biochemical Society Transactions, 1997, 25, 465S-465S.	3.4	3
119	Structure-function studies of the brain-type glucose transporter, GLUT3: alanine-scanning mutagenesis of putative transmembrane helix 8. Biochemical Society Transactions, 1997, 25, 474S-474S.	3.4	3
120	Structureâ^'Function Studies of the Brain-Type Glucose Transporter, GLUT3:Â Alanine-Scanning Mutagenesis of Putative Transmembrane Helix VIII and an Investigation of the Role of Proline Residues in Transport Catalysisâ€. Biochemistry, 1997, 36, 6401-6407.	2.5	16
121	Functional Studies of Human GLUT5: Effect of pH on Substrate Selection and an Analysis of Substrate Interactions. Biochemical and Biophysical Research Communications, 1997, 238, 503-505.	2.1	36
122	Evidence that Thrombin-stimulated DNA Synthesis in Pulmonary Arterial Fibroblasts Involves Phosphatidylinositol 3-kinase-dependent p70 Ribosomal S6 Kinase Activation. Cellular Signalling, 1997, 9, 109-116.	3.6	15
123	Cyclic AMP Inhibits PDGF-stimulated Mitogen-activated Protein Kinase Activity in Rat Aortic Smooth Muscle Cells via Inactivation of c-Raf-1 Kinase and Induction of MAP Kinase Phosphatase-1. Cellular Signalling, 1997, 9, 323-328.	3.6	28
124	Stress-activated Protein Kinases: Activation, Regulation and Function. Cellular Signalling, 1997, 9, 403-410.	3.6	303
125	Structureâ^'Function Analysis of Liver-Type (GLUT2) and Brain-Type (GLUT3) Glucose Transporters:Â Expression of Chimeric Transporters inXenopusOocytes Suggests an Important Role for Putative Transmembrane Helix 7 in Determining Substrate Selectivityâ€. Biochemistry, 1996, 35, 16519-16527.	2.5	69
126	Stimulation by the nucleotides, ATP and UTP of mitogenâ€activated protein kinase in EAhy 926 endothelial cells. British Journal of Pharmacology, 1996, 117, 1341-1347.	5.4	36

#	Article	IF	CITATIONS
127	Dynamics of insulin-stimulated translocation of GLUT4 in single living cells visualised using green fluorescent protein. FEBS Letters, 1996, 393, 179-184.	2.8	48
128	Glucose transporters in rat peripheral nerve: Paranodal expression of GLUT1 and GLUT3. Metabolism: Clinical and Experimental, 1996, 45, 1466-1473.	3.4	64
129	Efficacy of agonist-stimulated MEK activation determines the susceptibility of mitogen-activated protein (MAP) kinase to inhibition in rat aortic smooth muscle cells. Biochemical Journal, 1996, 318, 657-663.	3.7	20
130	Treatment of vascular smooth muscle cells with antisense phosphorothioate oligodeoxynucleotides directed against p42 and p44 mitogen-activated protein kinases abolishes DNA synthesis in response to platelet-derived growth factor. Biochemical Journal, 1996, 320, 123-127.	3.7	33
131	Hormonal regulation of the insulin-responsive glucose transporter, GLUT4: some recent advances. Proceedings of the Nutrition Society, 1996, 55, 179-190.	1.0	3
132	Compartment ablation analysis of the insulin-responsive glucose transporter (GLUT4) in 3T3-L1 adipocytes. Biochemical Journal, 1996, 315, 487-495.	3.7	137
133	Role of receptor desensitization, phosphatase induction and intracellular cyclic AMP in the termination of mitogen-activated protein kinase activity in UTP-stimulated EAhy 926 endothelial cells. Biochemical Journal, 1996, 315, 563-569.	3.7	12
134	Lysophosphatidic acid stimulates glucose transport in <i>Xenopus</i> oocytes via a phosphatidylinositol 3′-kinase with distinct properties. Biochemical Journal, 1996, 316, 161-166.	3.7	17
135	A regulatory role for cAMP in phosphatidylinositol 3-kinase/p70 ribosomal S6 kinase-mediated DNA synthesis in platelet-derived-growth-factor-stimulated bovine airway smooth-muscle cells. Biochemical Journal, 1996, 318, 965-971.	3.7	113
136	Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases. Biochemical Journal, 1996, 320, 939-946.	3.7	106
137	The Use of Biotinylaton in the Detection and Purification of Affinity Labelled GLUT-1. Biochemical Society Transactions, 1996, 24, 115S-115S.	3.4	4
138	The role of protein kinase C in activation and termination of mitogen-activated protein kinase activity in angiotensin II-stimulated rat aortic smooth-muscle cells. Cellular Signalling, 1996, 8, 123-129.	3.6	33
139	Phosphatidylinositol 3′-kinase, But Not p70 Ribosomal S6 Kinase, Is Involved in Membrane Protein Recycling: Wortmannin Inhibits Clucose Transport and Downregulates Cell-Surface Transferrin Receptor Numbers Independently of Any Effect on Fluid-phase Endocytosis in Fibroblasts. Cellular Signalling, 1996, 8, 297-304.	3.6	41
140	The regulation of GLUT5 and GLUT2 activity in the adaptation of intestinal brush-border fructose transport in diabetes. Pflugers Archiv European Journal of Physiology, 1996, 432, 192-201.	2.8	108
141	The glucose transporter (GLUT-4) and vesicle-associated membrane protein-2 (VAMP-2) are segregated from recycling endosomes in insulin-sensitive cells Journal of Cell Biology, 1996, 134, 625-635.	5.2	200
142	Trafficking, targeting and translocation of the insulin-responsive glucose transporter, GLUT4, in adipocytes. Biochemical Society Transactions, 1996, 24, 540-546.	3.4	13
143	P-41: Real-time analysis of insulin-stimulated GLUT4 translocation in single living cells using green fluorescent protein. Experimental and Clinical Endocrinology and Diabetes, 1996, 104, 107-107.	1.2	0
144	Regulation of lysophosphatidic acid-stimulated tyrosine phosphorylation of mitogen-activated protein kinase by protein kinase C- and pertussis toxin-dependent pathways in the endothelial cell line EAhy 926. Biochemical Journal, 1995, 307, 743-748.	3.7	30

#	Article	IF	CITATIONS
145	The activation of distinct mitogen-activated protein kinase cascades is required for the stimulation of 2-deoxyglucose uptake by interleukin-1 and insulin-like growth factor-1 in KB cells. Biochemical Journal, 1995, 311, 735-738.	3.7	93
146	Regulation of Lysophosphatidic acid-stimulated tyrosine phosphorylation of pp42 mitogen-activated protein kinase by protein kinase C and protein kinase A in EAhy926 cells. Biochemical Society Transactions, 1995, 23, 339S-339S.	3.4	1
147	The permissive effect of serum on the inhibition of mitogenactivated protein kinase by forskolin in vascular smooth muscle cells. Biochemical Society Transactions, 1995, 23, 341S-341S.	3.4	1
148	Insulin Resistance, Hypertension and the Insulin-Responsive Glucose Transporter, GLUT4. Clinical Science, 1995, 89, 109-116.	4.3	16
149	Insulin Resistance in Diabetes Mellitus. Scottish Medical Journal, 1995, 40, 37-39.	1.3	1
150	The effects of insulin on the level and activity of the GLUT4 present in human adipose cells. Diabetologia, 1995, 38, 661-666.	6.3	40
151	Analysis of the Glucose Transporter Compliment of Metabolically Important Tissues from the Milan Hypertensive Rat. Biochemical and Biophysical Research Communications, 1995, 211, 780-791.	2.1	16
152	Hypothalamic GLUT 4 expression: a glucose- and insulin-sensing mechanism?. Molecular and Cellular Endocrinology, 1995, 107, 67-70.	3.2	50
153	The effects of insulin on the level and activity of the GLUT4 present in human adipose cells. Diabetologia, 1995, 38, 661-666.	6.3	3
154	Growth factor-induced stimulation of hexose transport in 3T3-L1 adipocytes: Evidence that insulin-induced translocation of glut4 is independent of activation of MAP kinase. Cellular Signalling, 1994, 6, 313-320.	3.6	28
155	Analysis of the co-localization of the insulin-responsive glucose transporter (GLUT4) and the <i>trans</i> Golgi network marker TGN38 within 3T3-L1 adipocytes. Biochemical Journal, 1994, 300, 743-749.	3.7	52
156	Expression of the liver-type glucose transporter (GLUT2) in 3T3-L1 adipocytes: analysis of the effects of insulin on subcellular distribution. Biochemical Journal, 1994, 304, 307-311.	3.7	6
157	Mammalian glucose transporters: intracellular signalling and transporter translocation. Biochemical Society Transactions, 1994, 22, 664-667.	3.4	1
158	Regulation of endothelin-1- and lysophosphatidic acid-stimulated tyrosine phosphorylation of focal adhesion kinase (pp125fak) in Rat-1 fibroblasts. Biochemical Journal, 1994, 301, 407-414.	3.7	41
159	Evidence for a role of phosphatidylinositol 3-kinase in the regulation of glucose transport in Xenopus oocytes. Journal of Biological Chemistry, 1994, 269, 26622-5.	3.4	30
160	Growth factors, mitogens, oncogenes and the regulation of glucose transport. Cellular Signalling, 1993, 5, 667-675.	3.6	120
161	Immunological Analysis of Glucose Transporters Expressed in Different Regions of the Rat Brain and Central Nervous System. Biochemical and Biophysical Research Communications, 1993, 192, 1297-1302.	2.1	138
162	Insulin and platelet-derived growth factor acutely stimulate glucose transport in 3T3-L1 fibroblasts independently of protein kinase C. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1177, 191-198	4.1	19

#	Article	IF	CITATIONS
163	Analysis of the structural requirements of sugar binding to the liver, brain and insulin-responsive glucose transporters expressed in oocytes. Biochemical Journal, 1993, 294, 753-760.	3.7	29
164	The glucose transporter family: structure, function and tissue-specific expression. Biochemical Journal, 1993, 295, 329-341.	3.7	731
165	Mitogen-activated protein kinase (MAP kinase), MAP kinase kinase and c-Mos stimulate glucose transport in Xenopus oocytes. Biochemical Journal, 1993, 295, 351-355.	3.7	36
166	Pancreatic β-cells express a low affinity glucose transporter: functional consequences in normal and diabetic states. Biochemical Society Transactions, 1993, 21, 164-168.	3.4	5
167	MAP kinase may play a role in the early phase of glucose transport in insulin treated 3T3-L1 fibroblasts. Biochemical Society Transactions, 1993, 21, 355S-355S.	3.4	0
168	Differential targeting of glucose transporter isoforms heterologously expressed in Xenopus oocytes. Biochemical Journal, 1993, 290, 707-715.	3.7	22
169	Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in <i>Xenopus</i> oocytes: substrate specificities and effects of transport inhibitors. Biochemical Journal, 1993, 290, 701-706.	3.7	149
170	Characterization of the ileal Na+/bile salt co-transporter in brush border membrane vesicles and functional expression in <i>Xenopus laevis</i> oocytes. Biochemical Journal, 1992, 285, 785-790.	3.7	16
171	Tissue-specific expression of facilitative glucose transporters: a rationale. Biochemical Society Transactions, 1992, 20, 538-542.	3.4	12
172	Examination of the glycosidation state of five members of the human facultative glucose transporter family. Biochemical Society Transactions, 1992, 20, 235S-235S.	3.4	4
173	Immunological identification of five members of the human facultative glucose transporter family. Biochemical Society Transactions, 1992, 20, 236S-236S.	3.4	5
174	Distribution of GLUT3 glucose transporter protein in human tissues. Biochemical and Biophysical Research Communications, 1992, 188, 149-154.	2.1	106
175	Role of the adenylate cyclase, phosphoinositidase C and receptor tyrosyl kinase systems in the control of hepatocyte proliferation by hepatocyte growth factor. Biochemical Pharmacology, 1992, 44, 1037-1043.	4.4	19
176	Development of insulin sensitivity in rat skeletal muscle Studies of glucose transporter and insulin receptor mRNA levels. FEBS Letters, 1992, 301, 69-72.	2.8	7
177	Expression of the brain-type glucose transporter is restricted to brain and neuronal cells in mice. Diabetologia, 1992, 35, 304-309.	6.3	55
178	Analysis of the glucose transporter content of islet cell lines: Implications for glucose-stimulated insulin release. Cellular Signalling, 1992, 4, 641-650.	3.6	37
179	Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry, 1991, 30, 5139-5145.	2.5	291
180	Phorbol ester only partially mimics the effects of insulin on glucose transport and glucose-transporter distribution in 3T3-L1 adipocytes. Biochemical Journal, 1991, 275, 145-150.	3.7	41

#	Article	IF	CITATIONS
181	Agonist-dependent, cholera toxin-catalyzed ADP-ribosylation of pertussis toxin-sensitive G-proteins following transfection of the human alpha 2-C10 adrenergic receptor into rat 1 fibroblasts. Evidence for the direct interaction of a single receptor with two pertussis toxin-sensitive G-proteins, Gi2 and Gi3. Journal of Biological Chemistry, 1991, 266, 6447-55.	3.4	53
182	Translocation of the brain-type glucose transporter largely accounts for insulin stimulation of glucose transport in BC3H-1 myocytes. Biochemical Journal, 1990, 269, 597-601.	3.7	50
183	Facilitative glucose transporters: an expanding family. Trends in Biochemical Sciences, 1990, 15, 18-23.	7.5	297
184	Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). Journal of Biological Chemistry, 1990, 265, 13276-82.	3.4	266
185	Expression of a functional glucose transporter in Xenopus oocytes. Biochemistry, 1989, 28, 9447-9452.	2.5	79
186	Expression of c-raf-1 and A-raf-1 during differentiation of 3T3-L1 preadipocyte fibroblasts into adipocytes. Biochemical and Biophysical Research Communications, 1989, 162, 1180-1187.	2.1	11
187	Phenylarsine oxide stimulates hexose transport in 3T3-L1 adipocytes by a mechanism other than an increase in surface transporters. Archives of Biochemistry and Biophysics, 1989, 268, 264-275.	3.0	36
188	Comparison of phosphatidylethanolamine and phosphatidylcholine vesicles produced by treating cholate-phospholipid micelles with cholestyramine. Biochimica Et Biophysica Acta - Biomembranes, 1989, 982, 187-195.	2.6	8
189	Insulin-stimulated translocation of the HepG2/erythrocyte-type glucose transporter expressed in 3T3-L1 adipocytes. Journal of Biological Chemistry, 1989, 264, 2180-4.	3.4	77
190	Insulin-induced translocation of glucose transporters to the plasma membrane precedes full stimulation of hexose transport. Biochemistry, 1988, 27, 6681-6685.	2.5	67
191	Characterization of vesicles containing insulin-responsive intracellular glucose transporters isolated from 3T3-L1 adipocytes by an improved procedure. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 971, 339-350.	4.1	16
192	Regulation of protein phosphorylation by insulin and an insulinomimetic oligosaccharide In 3T3-L1 adipocytes and Fao hepatoma cells. Biochemical and Biophysical Research Communications, 1988, 153, 992-998.	2.1	25
193	A kinetic model for Ca2+ efflux mediated by the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Biochemical Journal, 1987, 245, 713-721.	3.7	18
194	Characterization of Ca2+ uptake and release by vesicles of skeletal-muscle sarcoplasmic reticulum. Biochemical Journal, 1987, 245, 731-738.	3.7	24
195	A model for the uptake and release of Ca2+ by sarcoplasmic reticulum. Biochemical Journal, 1987, 245, 739-749.	3.7	27
196	Effects of diet on the function of sarcoplasmic reticulum. Biochemical Journal, 1987, 245, 751-755.	3.7	25
197	Uptake at Ca2+ mediated by the (Ca2+ + Mg2+)-ATPase in reconstituted vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1987, 904, 36-44.	2.6	32
198	A fast passive Ca2+ efflux mediated by the (Ca2+ + Mg2+)-ATPase in reconstituted vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1987, 904, 45-54.	2.6	43

#	Article	IF	CITATIONS
199	Silver ions trigger Ca2+ release by interaction with the (Ca2+-Mg2+)-ATPase in reconstituted systems. Journal of Biological Chemistry, 1987, 262, 7676-9.	3.4	47
200	A kinetic model for the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Biochemical Journal, 1986, 237, 217-227.	3.7	105