

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7517488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10, 699-704.	31.4	1,535
2	High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 2018, 12, 783-789.	31.4	715
3	Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix. Nano Letters, 2015, 15, 2640-2644.	9.1	621
4	Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nature Photonics, 2019, 13, 760-764.	31.4	483
5	High-performance light-emitting diodes based on carbene-metal-amides. Science, 2017, 356, 159-163.	12.6	444
6	Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nature Communications, 2018, 9, 608.	12.8	322
7	Efficient and High-Color-Purity Light-Emitting Diodes Based on <i>In Situ</i> Grown Films of CsPbX ₃ (X = Br, I) Nanoplates with Controlled Thicknesses. ACS Nano, 2017, 11, 11100-11107.	14.6	190
8	The Physics of Light Emission in Halide Perovskite Devices. Advanced Materials, 2019, 31, e1803336.	21.0	189
9	Size-Dependent Photon Emission from Organometal Halide Perovskite Nanocrystals Embedded in an Organic Matrix. Journal of Physical Chemistry Letters, 2015, 6, 446-450.	4.6	160
10	Efficient Triplet Exciton Fusion in Molecularly Doped Polymer Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1605987.	21.0	155
11	Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nature Photonics, 2022, 16, 505-511.	31.4	152
12	Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nature Electronics, 2020, 3, 704-710.	26.0	143
13	The role of photon recycling in perovskite light-emitting diodes. Nature Communications, 2020, 11, 611.	12.8	121
14	Deciphering exciton-generation processes in quantum-dot electroluminescence. Nature Communications, 2020, 11, 2309.	12.8	96
15	Copper and Gold Cyclic (Alkyl)(amino)carbene Complexes with Subâ€Microsecond Photoemissions: Structure and Substituent Effects on Redox and Luminescent Properties. Chemistry - A European Journal, 2017, 23, 4625-4637.	3.3	91
16	Highly photoluminescent copper carbene complexes based on prompt rather than delayed fluorescence. Chemical Communications, 2016, 52, 6379-6382.	4.1	79
17	Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure. ACS Energy Letters, 2018, 3, 869-874.	17.4	77
18	Toward Stable and Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2109495.	14.9	77

Dawei Di

#	Article	IF	CITATIONS
19	Power Conversion Efficiency Enhancement of Low-Bandgap Mixed Pb–Sn Perovskite Solar Cells by Improved Interfacial Charge Transfer. ACS Energy Letters, 2019, 4, 1784-1790.	17.4	76
20	Mononuclear Silver Complexes for Efficient Solution and Vacuumâ€Processed OLEDs. Advanced Optical Materials, 2018, 6, 1801347.	7.3	75
21	Dendritic Carbene Metal Carbazole Complexes as Photoemitters for Fully Solution-Processed OLEDs. Chemistry of Materials, 2019, 31, 3613-3623.	6.7	68
22	Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. Progress in Photovoltaics: Research and Applications, 2011, 19, 813-824.	8.1	63
23	Formation and photoluminescence of Si quantum dots in SiO2/Si3N4 hybrid matrix for all-Si tandem solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 2238-2243.	6.2	60
24	Germanium-lead perovskite light-emitting diodes. Nature Communications, 2021, 12, 4295.	12.8	50
25	In Situ Atmospheric Deposition of Ultrasmooth Nickel Oxide for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 41849-41854.	8.0	47
26	Si solid-state quantum dot-based materials for tandem solar cells. Nanoscale Research Letters, 2012, 7, 193.	5.7	46
27	Shallow distance-dependent triplet energy migration mediated by endothermic charge-transfer. Nature Communications, 2021, 12, 1532.	12.8	33
28	Shape-Controlled Metal-Free Catalysts: Facet-Sensitive Catalytic Activity Induced by the Arrangement Pattern of Noncovalent Supramolecular Chains. ACS Nano, 2017, 11, 4866-4876.	14.6	31
29	Improved nanocrystal formation, quantum confinement and carrier transport properties of doped Si quantum dot superlattices for third generation photovoltaics. Progress in Photovoltaics: Research and Applications, 2013, 21, 569-577.	8.1	29
30	High-Efficiency Dual-Dopant Polymer Light-Emitting Diodes with Ultrafast Inter-fluorophore Energy Transfer. Joule, 2019, 3, 2381-2389.	24.0	29
31	Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells. Nanoscale Research Letters, 2010, 5, 1762-1767.	5.7	28
32	PCDTBT: From Polymer Photovoltaics to Light-Emitting Diodes by Side-Chain-Controlled Luminescence. Macromolecules, 2016, 49, 9382-9387.	4.8	26
33	On the energetics of bound charge-transfer states in organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 11949-11959.	10.3	23
34	Ultralow-voltage operation of light-emitting diodes. Nature Communications, 2022, 13, .	12.8	23
35	Electroluminescence from Si nanocrystal/c-Si heterojunction light-emitting diodes. Applied Physics Letters, 2011, 99, 251113.	3.3	21
36	Deepâ€Red Perovskite Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 21% Enabled by Ligandâ€Modulated Dimensionality Control. Advanced Optical Materials, 2022, 10, .	7.3	16

Dawei Di

#	Article	IF	CITATIONS
37	Optical characterisation of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix for third generation photovoltaics. Nanoscale Research Letters, 2011, 6, 612.	5.7	13
38	Efficient mini/micro-perovskite light-emitting diodes. Cell Reports Physical Science, 2021, 2, 100582.	5.6	8
39	On the accurate characterization of quantum-dot light-emitting diodes for display applications. Npj Flexible Electronics, 2022, 6, .	10.7	8
40	Fast Lasing Wavelength Tuning in Single Nanowires. Advanced Optical Materials, 2019, 7, 1900797.	7.3	6
41	Highly Efficient and Thickness Insensitive Inverted Triple-Cation Perovskite Solar Cells Fabricated by Gas Pumping Method. Journal of Physical Chemistry Letters, 2021, 12, 5580-5586.	4.6	6
42	Photon-upconverters for blue organic light-emitting diodes: a low-cost, sky-blue example. Nanoscale Advances, 2022, 4, 1318-1323.	4.6	6
43	Investigation in feasibility of Molybdenum as a back contact layer for Silicon based quantum dot solar cells. Proceedings of SPIE, 2013, , .	0.8	5
44	Tuning Precursor–Amine Interactions for Light-Emitting Lead Bromide Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 704-710.	4.6	5
45	Additive and interfacial control for efficient perovskite light-emitting diodes with reduced trap densities. Journal of Semiconductors, 2022, 43, 050502.	3.7	5
46	Perovskite LEDs. , 2019, 1, 1-5.		3
47	Transient Suppression of Carrier Mobility Due to Hot Optical Phonons in Lead Bromide Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 5488-5494.	4.6	3
48	Fabrication and characterisation of silicon quantum dots in SiO 2 /Si 3 N 4 hybrid matrix. , 2010, , .		2
49	Size-dependent optical absorption of silicon nanocrystals embedded in SiO2/Si3N4 hybrid matrix. Journal of Non-Crystalline Solids, 2013, 362, 169-174.	3.1	2
50	Elimination of severe shunting problems due to air-side electrode formation on evaporated poly-Si thin-film solar cells on glass. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	1
51	Silicon rich carbide as a conductive substrate for Si QD solar cells. Proceedings of SPIE, 2013, , .	0.8	0
52	Next-generation High-performance OLEDs: From Triplet Exciton Fusion to Spin-state Inversion. , 2017, , .		0
53	Toward high-efficiency solution-processed tandem solar cells. , 2018, , .		0
54	Efficient Perovskite Optoelectronic Devices: Carrier Kinetics and Efficiency Modelling. , 2019, , .		0