
Tomotsugu Koyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7516285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant Journal, 2003, 34, 733-739.	5.7	724
2	TCP Transcription Factors Control the Morphology of Shoot Lateral Organs via Negative Regulation of Boundary-Specific Genes in Arabidopsis. Plant Cell, 2007, 19, 473-484.	6.6	369
3	The AP2/ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis. Current Biology, 2011, 21, 508-514.	3.9	369
4	TCP Transcription Factors Regulate the Activities of ASYMMETRIC LEAVES1 and miR164, as Well as the Auxin Response, during Differentiation of Leaves in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 3574-3588.	6.6	335
5	Arabidopsis SBP-Box Genes SPL10, SPL11 and SPL2 Control Morphological Change in Association with Shoot Maturation in the Reproductive Phase. Plant and Cell Physiology, 2009, 50, 2133-2145.	3.1	248
6	MIXTA-Like Transcription Factors and WAX INDUCER1/SHINE1 Coordinately Regulate Cuticle Development in <i>Arabidopsis</i> and <i>Torenia fournieri</i> Â Â. Plant Cell, 2013, 25, 1609-1624.	6.6	247
7	Roles of miR319 and TCP Transcription Factors in Leaf Development. Plant Physiology, 2017, 175, 874-885.	4.8	175
8	The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Frontiers in Plant Science, 2014, 5, 650.	3.6	115
9	A Regulatory Cascade Involving Class II ETHYLENE RESPONSE FACTOR Transcriptional Repressors Operates in the Progression of Leaf Senescence Â. Plant Physiology, 2013, 162, 991-1005.	4.8	103
10	Essences in Metabolic Engineering of Lignan Biosynthesis. Metabolites, 2015, 5, 270-290.	2.9	84
11	Functional Analysis of Arabidopsis Ethylene-Responsive Element Binding Protein Conferring Resistance to Bax and Abiotic Stress-Induced Plant Cell Death. Plant Physiology, 2005, 138, 1436-1445.	4.8	80
12	TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genetics, 2017, 13, e1006856.	3.5	80
13	Isoquinoline Alkaloid Biosynthesis is Regulated by a Unique bHLH-Type Transcription Factor in Coptis japonica. Plant and Cell Physiology, 2011, 52, 1131-1141.	3.1	74
14	A Role of TCP1 in the Longitudinal Elongation of Leaves in Arabidopsis. Bioscience, Biotechnology and Biochemistry, 2010, 74, 2145-2147.	1.3	58
15	A Chimeric AtMYB23 Repressor Induces Hairy Roots, Elongation of Leaves and Stems, and Inhibition of the Deposition of Mucilage on Seed Coats in Arabidopsis. Plant and Cell Physiology, 2005, 46, 147-155.	3.1	50
16	Arabidopsis chimeric TCP3 repressor produces novel floral traits in Torenia fournieri and Chrysanthemum morifolium. Plant Biotechnology, 2011, 28, 131-140.	1.0	44
17	A hidden link between leaf development and senescence. Plant Science, 2018, 276, 105-110.	3.6	36
18	Generation of serrated and wavy petals by inhibition of the activity of TCP transcription factors inArabidopsis thaliana. Plant Signaling and Behavior, 2011, 6, 697-699.	2.4	35

Томотѕиси Коуама

#	Article	IF	CITATIONS
19	Creating ruffled flower petals in Cyclamen persicum by expression of the chimeric cyclamen TCP repressor. Plant Biotechnology, 2011, 28, 141-147.	1.0	31
20	The new FioreDB database provides comprehensive information on plant transcription factors and phenotypes induced by CRES-T in ornamental and model plants. Plant Biotechnology, 2011, 28, 123-130.	1.0	26
21	FioreDB: a database of phenotypic information induced by the chimeric repressor silencing technology (CRES-T) in Arabidopsis and floricultural plants. Plant Biotechnology, 2008, 25, 37-43.	1.0	24
22	Basic helix-loop-helix transcription factors and regulation of alkaloid biosynthesis. Plant Signaling and Behavior, 2011, 6, 1627-1630.	2.4	24
23	Generation of Triple-Transgenic Forsythia Cell Cultures as a Platform for the Efficient, Stable, and Sustainable Production of Lignans. PLoS ONE, 2015, 10, e0144519.	2.5	20
24	Morphological changes of Rosa×hybrida by a chimeric repressor of Arabidopsis TCP3. Plant Biotechnology, 2011, 28, 149-152.	1.0	18
25	Constitutive expression of the neutral PR-5 (OLP, PR-5d) gene in roots and cultured cells of tobacco is mediated by ethylene-responsive cis -element AGCCGCC sequences. Plant Cell Reports, 1998, 18, 173-179.	5.6	13
26	Identification of a binding protein for sesamin and characterization of its roles in plant growth. Scientific Reports, 2019, 9, 8631.	3.3	11
27	Ethylene is all around. Frontiers in Plant Science, 2015, 6, 76.	3.6	6
28	Practical optimization of liquid chromatography/mass spectrometry conditions and pretreatment methods toward the sensitive quantification of auxin in plants. Rapid Communications in Mass Spectrometry, 2020, 34, e8625.	1.5	4
29	CRES-T for the Functional Analysis of Transcription Factors and Modification of Morphological Traits in Plants. Current Biotechnology, 2012, 1, 23-32.	0.4	3