Chris S Blackman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7516201/publications.pdf

Version: 2024-02-01

109321 144013 3,890 115 35 57 citations h-index g-index papers 117 117 117 5170 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct <i>iin situ</i> spectroscopic evidence of the crucial role played by surface oxygen vacancies in the O ₂ -sensing mechanism of SnO ₂ . Chemical Science, 2022, 13, 6089-6097.	7.4	7
2	Chemical vapour deposition (CVD) of nickel oxide using the novel nickel dialkylaminoalkoxide precursor [Ni(dmampâ \in 2) ₂] (dmampâ \in 2 = 2-dimethylamino-2-methyl-1-propanolate). RSC Advances, 2021, 11, 22199-22205.	, 3.6	5
3	Charge Transport Phenomena in Heterojunction Photocatalysts: The WO ₃ /TiO ₂ System as an Archetypical Model. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 9781-9793.	8.0	24
4	Robust Protection of Ill–V Nanowires in Water Splitting by a Thin Compact TiO ₂ Layer. ACS Applied Materials & Damp; Interfaces, 2021, 13, 30950-30958.	8.0	12
5	Developing Nâ€Rich Carbon from C ₃ N ₄ â€Polydopamine Composites for Efficient Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 3954-3961.	3.4	4
6	Atomistic Descriptions of Gas-Surface Interactions on Tin Dioxide. Chemosensors, 2021, 9, 270.	3.6	9
7	Do We Need "lonosorbed―Oxygen Species? (Or, "A Surface Conductivity Model of Gas Sensitivity in) Tj E 3509-3516.		784314 rgB 18
8	Persistence of transferred fragrance on fabrics for forensic reconstruction applications. Science and Justice - Journal of the Forensic Science Society, 2020, 60, 53-62.	2.1	9
9	Anisotropic Electron Transport Limits Performance of Bi ₂ WO ₆ Photoanodes. Journal of Physical Chemistry C, 2020, 124, 18859-18867.	3.1	9
10	Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO ₂ . Chemistry of Materials, 2020, 32, 1964-1973.	6.7	50
11	Humidity-Tolerant Ultrathin NiO Gas-Sensing Films. ACS Sensors, 2020, 5, 1389-1397.	7.8	38
12	Comparative study of spin-coated and vapour deposited nickel oxides for detecting VOCs., 2020,,.		3
13	A Multi-MOx Sensor Approach to Measure Oxidizing and Reducing Gases. Proceedings (mdpi), 2019, 14, 50.	0.2	5
14	Dynamics of Photoâ€Induced Surface Oxygen Vacancies in Metalâ€Oxide Semiconductors Studied Under Ambient Conditions. Advanced Science, 2019, 6, 1901841.	11.2	62
15	WO ₃ /BiVO ₄ : impact of charge separation at the timescale of water oxidation. Chemical Science, 2019, 10, 2643-2652.	7.4	59
16	Effect of oxygen deficiency on the excited state kinetics of WO ₃ and implications for photocatalysis. Chemical Science, 2019, 10, 5667-5677.	7.4	97
17	Use of a New Non-Pyrophoric Liquid Aluminum Precursor for Atomic Layer Deposition. Materials, 2019, 12, 1429.	2.9	6
18	Heteroepitaxy of GaP on silicon for efficient and cost-effective photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 8550-8558.	10.3	19

#	Article	IF	CITATIONS
19	Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing. Advanced Materials, 2019, 31, e1803432.	21.0	184
20	Fragrance transfer between fabrics for forensic reconstruction applications. Science and Justice - Journal of the Forensic Science Society, 2019, 59, 256-267.	2.1	10
21	Surface Oxygen Vacancies: Dynamics of Photoâ€Induced Surface Oxygen Vacancies in Metalâ€Oxide Semiconductors Studied Under Ambient Conditions (Adv. Sci. 22/2019). Advanced Science, 2019, 6, 1970132.	11.2	3
22	AACVD Grown WO ₃ Nanoneedles Decorated With Ag/Ag ₂ O Nanoparticles for Oxygen Measurement in a Humid Environment. IEEE Sensors Journal, 2019, 19, 826-832.	4.7	7
23	Gallium Phosphide photoanode coated with TiO ₂ and CoO _x for stable photoelectrochemical water oxidation. Optics Express, 2019, 27, A364.	3.4	18
24	Gas-phase synthesis of hybrid nanostructured materials. Nanoscale, 2018, 10, 22981-22989.	5.6	5
25	Water Oxidation and Electron Extraction Kinetics in Nanostructured Tungsten Trioxide Photoanodes. Journal of the American Chemical Society, 2018, 140, 16168-16177.	13.7	105
26	InGaN/GaN Multiple Quantum Well Photoanode Modified with Cobalt Oxide for Water Oxidation. ACS Applied Energy Materials, 2018, 1, 6417-6424.	5.1	23
27	Development of a HS-SPME/GC–MS method for the analysis of volatile organic compounds from fabrics for forensic reconstruction applications. Forensic Science International, 2018, 290, 207-218.	2.2	28
28	The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition. Sensors, 2018, 18, 735.	3.8	49
29	Optimizing the Activity of Nanoneedle Structured WO ₃ Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition. Journal of Physical Chemistry C, 2017, 121, 5983-5993.	3.1	71
30	Correlation of Optical Properties, Electronic Structure, and Photocatalytic Activity in Nanostructured Tungsten Oxide. Advanced Materials Interfaces, 2017, 4, 1700064.	3.7	25
31	Facile synthesis of mesoporous hierarchical Co ₃ O ₄ –TiO ₂ p–n heterojunctions with greatly enhanced gas sensing performance. Journal of Materials Chemistry A, 2017, 5, 10387-10397.	10.3	116
32	Photocatalysis: Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO ₃ /TiO ₂ Heterojunction Films: A Computational and Experimental Study (Adv. Funct. Mater. 18/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
33	Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO ₃ /TiO ₂ Heterojunction Films: A Computational and Experimental Study. Advanced Functional Materials, 2017, 27, 1605413.	14.9	115
34	An array of WO ₃ and CTO heterojunction semiconducting metal oxide gas sensors used as a tool for explosive detection. Journal of Materials Chemistry A, 2017, 5, 2172-2179.	10.3	50
35	Nanoscale, conformal films of graphitic carbon nitride deposited at room temperature: a method for construction of heterojunction devices. Nanoscale, 2017, 9, 16586-16590.	5 . 6	20
36	Self-standing electrodes with core-shell structures for high-performance supercapacitors. Energy Storage Materials, 2017, 9, 119-125.	18.0	52

#	Article	IF	CITATIONS
37	Deposition of tungsten oxide and silver decorated tungsten oxide for use in oxygen gas sensing. , 2017,		1
38	Chemical Vapour Deposition of Gas Sensitive Metal Oxides. Chemosensors, 2016, 4, 4.	3.6	52
39	Micromachined Gas Sensors Based on Au-functionalized SnO 2 Nanorods Directly Integrated without Catalyst Seeds via AA-CVD. Procedia Engineering, 2016, 168, 1078-1081.	1.2	8
40	Aerosol-Assisted CVD-Grown PdO Nanoparticle-Decorated Tungsten Oxide Nanoneedles Extremely Sensitive and Selective to Hydrogen. ACS Applied Materials & Sensitive and Selective to Hydrogen. ACS Applied Materials & Sensitive and Selective to Hydrogen. ACS Applied Materials & Sensitive and Selective to Hydrogen. ACS Applied Materials & Sensitive and Selective to Hydrogen.	8.0	93
41	Single Step Solution Processed GaAs Thin Films from GaMe3andtBuAsH2under Ambient Pressure. Journal of Physical Chemistry C, 2016, 120, 7013-7019.	3.1	12
42	p -Type PdO nanoparticles supported on n -type WO 3 nanoneedles for hydrogen sensing. Thin Solid Films, 2016, 618, 238-245.	1.8	20
43	Analysis of transferred fragrance and its forensic implications. Science and Justice - Journal of the Forensic Science Society, 2016, 56, 413-420.	2.1	14
44	<l>A Special Section on</l> Nanocomposites: Synthesis and Optical Related Applications. Journal of Nanoscience and Nanotechnology, 2016, 16, 10067-10068.	0.9	0
45	Aerosol Assisted Chemical Vapour Deposition Synthesis of Copper(I) Oxide Thin Films for CO ₂ Reduction Photocatalysis. Journal of Nanoscience and Nanotechnology, 2016, 16, 10112-10116.	0.9	10
46	ZnO Rods with Exposed {100} Facets Grown via a Self-Catalyzed Vapor–Solid Mechanism and Their Photocatalytic and Gas Sensing Properties. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33335-33342.	8.0	42
47	Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism. Scientific Reports, 2016, 6, 28464.	3.3	37
48	Photocatalytic Oxygen Evolution from Cobalt-Modified Nanocrystalline BiFeO3 Films Grown via Low-Pressure Chemical Vapor Deposition from \hat{I}^2 -Diketonate Precursors. Crystal Growth and Design, 2016, 16, 3818-3825.	3.0	20
49	The spatial distribution patterns of condensed phase post-blast explosive residues formed during detonation. Journal of Hazardous Materials, 2016, 316, 204-213.	12.4	9
50	Morphological Variations of Explosive Residue Particles and Implications for Understanding Detonation Mechanisms. Analytical Chemistry, 2016, 88, 3899-3908.	6.5	18
51	AACVD synthesis of catalytic gold nanoparticle-modified cerium(IV) oxide thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 996-1000.	0.8	0
52	Growth mechanism of planar or nanorod structured tungsten oxide thin films deposited via aerosol assisted chemical vapour deposition (AACVD). Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 869-877.	0.8	36
53	A solution based route to GaAs thin films from As(NMe ₂) ₃ and GaMe ₃ for solar cells. RSC Advances, 2015, 5, 11812-11817.	3.6	11
54	Visible-light driven water splitting over BiFeO ₃ photoanodes grown via the LPCVD reaction of [Bi(O ^t Bu) ₃] and [Fe(O ^t Bu) ₃] ₂ and enhanced with a surface nickel oxygen evolution catalyst. Nanoscale, 2015, 7, 16343-16353.	5.6	55

#	Article	IF	CITATIONS
55	Single-step co-deposition of nanostructured tungsten oxide supported gold nanoparticles using a gold–phosphine cluster complex as the gold precursor. Science and Technology of Advanced Materials, 2014, 15, 065004.	6.1	4
56	Micromachined gas sensors based on tungsten oxide nanoneedles directly integrated via aerosol assisted CVD. Sensors and Actuators B: Chemical, 2014, 198, 210-218.	7.8	53
57	Microsensors based on Pt–nanoparticle functionalised tungsten oxide nanoneedles for monitoring hydrogen sulfide. RSC Advances, 2014, 4, 1489-1495.	3.6	30
58	A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation. Journal of Materials Chemistry A, 2014, 2, 2922.	10.3	89
59	Post-blast explosive residue – a review of formation and dispersion theories and experimental research. RSC Advances, 2014, 4, 54354-54371.	3.6	23
60	Solution Processing of GaAs Thin Films for Photovoltaic Applications. Chemistry of Materials, 2014, 26, 4419-4424.	6.7	29
61	Aerosol-assisted CVD synthesis, characterisation and gas-sensing application of gold-functionalised tungsten oxide. Journal of Sensors and Sensor Systems, 2014, 3, 325-330.	0.9	4
62	Nanostructured tungsten oxide gas sensors prepared by electric field assisted aerosol assisted chemical vapour deposition. Journal of Materials Chemistry A, 2013, 1, 1827-1833.	10.3	43
63	Atmospheric pressure chemical vapour deposition of vanadium arsenide thin films via the reaction of VCl4 or VOCl3 with tBuAsH2. Thin Solid Films, 2013, 537, 171-175.	1.8	2
64	AA-CVD growth and ethanol sensing properties of pure and metal decorated WO _{3 nanoneedles. International Journal of Nanotechnology, 2013, 10, 455.}	0.2	4
65	Aerosol assisted chemical vapour deposition of gas-sensitive nanomaterials. Thin Solid Films, 2013, 548, 703-709.	1.8	26
66	Singleâ€Step Deposition of Au―and Ptâ€Nanoparticleâ€Functionalized Tungsten Oxide Nanoneedles Synthesized Via Aerosolâ€Assisted CVD, and Used for Fabrication of Selective Gas Microsensor Arrays. Advanced Functional Materials, 2013, 23, 1313-1322.	14.9	143
67	Sensors: Singleâ€Step Deposition of Au―and Ptâ€Nanoparticleâ€Functionalized Tungsten Oxide Nanoneedles Synthesized Via Aerosolâ€Assisted CVD, and Used for Fabrication of Selective Gas Microsensor Arrays (Adv. Funct. Mater. 10/2013). Advanced Functional Materials, 2013, 23, 1226-1226.	14.9	2
68	CO and H2 Sensing with CVD-Grown Tungsten Oxide Nanoneedles Decorated with Au, Pt or Cu Nanoparticles. Procedia Engineering, 2012, 47, 904-907.	1.2	7
69	Tantalum and Titanium doped In ₂ O ₃ Thin Films by Aerosol-Assisted Chemical Vapor Deposition and their Gas Sensing Properties. Chemistry of Materials, 2012, 24, 2864-2871.	6.7	61
70	Photocatalytic activity of needle-like TiO2/WO3â^'x thin films prepared by chemical vapour deposition. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 239, 60-64.	3.9	34
71	A novel route to Pt–Bi2O3 composite thin films and their application in photo-reduction of water. Inorganica Chimica Acta, 2012, 380, 328-335.	2.4	27
72	Gold clusters on WO3 nanoneedles grown via AACVD: XPS and TEM studies. Materials Chemistry and Physics, 2012, 134, 809-813.	4.0	83

#	Article	IF	CITATIONS
73	Important considerations for effective gas sensors based on metal oxide nanoneedles films. Sensors and Actuators B: Chemical, 2012, 161, 406-413.	7.8	39
74	Spectroscopic studies of sulfite-based polyoxometalates at high temperature and high pressure. Journal of Solid State Chemistry, 2012, 186, 171-176.	2.9	15
75	Titanium arsenide films from the atmospheric pressure chemical vapour deposition of tetrakisdimethylamidotitanium and tert-butylarsine. Dalton Transactions, 2011, 40, 10664.	3.3	10
76	Au nanoparticle-functionalised WO ₃ nanoneedles and their application in high sensitivity gas sensor devices. Chemical Communications, 2011, 47, 565-567.	4.1	204
77	Aerosol Assisted Chemical Vapour Deposition Control Parameters for Selective Deposition of Tungsten Oxide Nanostructures. Journal of Nanoscience and Nanotechnology, 2011, 11, 8214-8220.	0.9	36
78	Atmospheric Pressure Chemical Vapour Deposition of TiCl ₄ and <i>t</i> BuAsH ₂ to Form Titanium Arsenide Thin Films. European Journal of Inorganic Chemistry, 2010, 2010, 5629-5634.	2.0	15
79	Characterization and gas sesing properties of intrinsic and Au-doped WO3 nanostuctures deposited by AACVD technique. Procedia Engineering, 2010, 5, 131-134.	1.2	7
80	Bis(cyclopentadienyl) zirconium(IV) amides as possible precursors for low pressure CVD and plasma-enhanced ALD. Inorganica Chimica Acta, 2010, 363, 1077-1083.	2.4	13
81	MOCVD of crystalline Bi2O3 thin films using a single-source bismuth alkoxide precursor and their use in photodegradation of water. Journal of Materials Chemistry, 2010, 20, 7881.	6.7	59
82	MOCVD of Zirconium Oxide from the Zirconium Guanidinate Complex [ZrCp′{η2-(iPrN)2CNMe2}2Cl]. ECS Transactions, 2009, 25, 561-565.	0.5	5
83	Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing. Thin Solid Films, 2009, 517, 4565-4570.	1.8	111
84	Synthesis of Zirconium Guanidinate Complexes and the Formation of Zirconium Carbonitride via Low Pressure CVD. Organometallics, 2009, 28, 1838-1844.	2.3	30
85	The reaction of tin(iv) iodide with phosphines: formation of new halotin anions. Dalton Transactions, 2009, , 10486.	3.3	10
86	Templated growth of tungsten oxide micro/nanostructures using aerosol assisted chemical vapour deposition. Materials Letters, 2008, 62, 4582-4584.	2.6	26
87	The gas-sensing properties of WO3â^'xthin films deposited via the atmospheric pressure chemical vapour deposition (APCVD) of WCl6with ethanol. Measurement Science and Technology, 2008, 19, 025203.	2.6	31
88	Tungsten imido complexes as precursors to tungsten carbonitride thin films. Dalton Transactions, 2008, , 5730.	3.3	22
89	Aerosol-assisted chemical vapour deposition of WO3 thin films using polyoxometallate precursors and their gas sensing properties. Journal of Materials Chemistry, 2007, 17, 1063.	6.7	57
90	Aerosol assisted chemical vapour deposition of WO3 thin films from tungsten hexacarbonyl and their gas sensing properties. Journal of Materials Chemistry, 2007, 17, 3708.	6.7	64

#	Article	IF	CITATIONS
91	The effect of oxygen-containing reagents on the crystal morphology and orientation in tungsten oxide thin films deposited via atmospheric pressure chemical vapour deposition (APCVD) on glass substrates. Faraday Discussions, 2007, 136, 329.	3.2	16
92	Tungsten Oxide and Tungsten Oxide-Titania Thin Films Prepared by Aerosol-Assisted Deposition – Use of Preformed Solid Nanoparticles. European Journal of Inorganic Chemistry, 2007, 2007, 1415-1421.	2.0	17
93	Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Applied Surface Science, 2007, 253, 6041-6046.	6.1	64
94	The APCVD of tungsten oxide thin films from reaction of WCl6 with ethanol and results on their gas-sensing properties. Polyhedron, 2007, 26, 1493-1498.	2.2	34
95	The Interaction between Otto Fuel II and Aqueous Hydroxylammonium Perchlorate (HAP), Part III: Depletion of Components within the Reacting Liquids. Propellants, Explosives, Pyrotechnics, 2007, 32, 222-226.	1.6	0
96	Aerosol assisted chemical vapour deposition of MoO3 and MoO2 thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation. Journal of Materials Chemistry, 2006, 16, 3575.	6.7	55
97	Composite thermochromic thin films: (TiO2)–(VO2) prepared from titanium isopropoxide, VOCl3 and water. Polyhedron, 2006, 25, 334-338.	2.2	20
98	APCVD of thermochromic vanadium dioxide thin filmsâ€"solid solutions V2â€"xMxO2 (M = Mo, Nb) or composites VO2 : SnO2. Journal of Materials Chemistry, 2005, 15, 4560.	6.7	93
99	Atmospheric Pressure Chemical Vapor Deposition of Crystalline Monoclinic WO3 and WO3-x Thin Films from Reaction of WCl6 with O-Containing Solvents and Their Photochromic and Electrochromic Properties. Chemistry of Materials, 2005, 17, 1583-1590.	6.7	161
100	The Interaction between Otto Fuel II and Aqueous Hydroxylammonium Perchlorate (HAP), Part I: Initial Observations and Time-to-Event Measurements. Propellants, Explosives, Pyrotechnics, 2004, 29, 262-266.	1.6	4
101	The Interaction between Otto Fuel II and Aqueous Hydroxylammonium Perchlorate (HAP), Part II: Gas Evolution and Changes in HAP Solution Acidity. Propellants, Explosives, Pyrotechnics, 2004, 29, 354-358.	1.6	1
102	Atmospheric-Pressure CVD of Vanadium Phosphide Thin Films from Reaction of Tetrakisdimethyl-amidovanadium and Cyclohexylphosphine. Chemical Vapor Deposition, 2004, 10, 253-255.	1.3	10
103	Low temperature deposition of crystalline chromium phosphide films using dual-source atmospheric pressure chemical vapour deposition. Applied Surface Science, 2004, 233, 24-28.	6.1	12
104	The reaction of GeCl4 with primary and secondary phosphines. Dalton Transactions, 2004, , 470.	3.3	15
105	Atmospheric-Pressure Chemical Vapor Deposition of Group IVb Metal Phosphide Thin Films from Tetrakisdimethylamidometal Complexes and Cyclohexylphosphine. Chemistry of Materials, 2004, 16, 1120-1125.	6.7	19
106	Dual-Source Atmospheric Pressure CVD of Amorphous Molybdenum Phosphide Films on Glass Using Molybdenum(V) Chloride and Cyclohexylphosphine. Chemical Vapor Deposition, 2003, 9, 10-13.	1.3	12
107	Dual-source chemical vapour deposition of titanium(III) phosphide from titanium tetrachloride and tristrimethylsilylphosphine. Applied Surface Science, 2003, 211, 2-5.	6.1	9
108	Chemical vapour deposition of crystalline thin films of tantalum phosphide. Materials Letters, 2003, 57, 2634-2636.	2.6	14

#	Article	IF	CITATIONS
109	Chemical vapour deposition of group Vb metal phosphide thin films. Journal of Materials Chemistry, 2003, 13, 1930.	6.7	16
110	Single-source CVD routes to titanium phosphide. Dalton Transactions RSC, 2002, , 2702-2709.	2.3	23
111	Titanium Phosphide Coatings from the Atmospheric Pressure Chemical Vapor Deposition of TiCl4and RPH2(R =t-Bu, Ph, CyHex). Chemistry of Materials, 2002, 14, 3167-3173.	6.7	20
112	Tin phosphide coatings from the atmospheric pressure chemical vapour deposition of SnX4 (X=Cl or) Tj ETQq0 (0 rgBT /0 292	Overlock 10 Tf
113	Dual source atmospheric pressure chemical vapour deposition of TiP films on glass using TiCl4 and PH2But. Journal of Materials Chemistry, 2001, 11, 2408-2409.	6.7	18
114	New synthetic route to WSF4 and its solution-phase structure as determined by tungsten L(III)-edge extended X-ray absorption fine structure studies. Journal of the Chemical Society Dalton Transactions, 1996, , 2975.	1.1	8
115	Thermochromic Coatings for Intelligent Architectural Glazing. Journal of Nano Research, 0, 2, 1-20.	0.8	46