Hannu Juhani Korkeala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7515497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sources of <i>Listeria monocytogenes</i> Contamination in a Cold-Smoked Rainbow Trout Processing Plant Detected by Pulsed-Field Gel Electrophoresis Typing. Applied and Environmental Microbiology, 1999, 65, 150-155.	3.1	258
2	Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins, 2017, 9, 38.	3.4	232
3	Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia. Frontiers in Microbiology, 2016, 7, 1151.	3.5	216
4	Adaptive and cross-adaptive responses of persistent and non-persistent Listeria monocytogenes strains to disinfectants. International Journal of Food Microbiology, 2003, 82, 265-272.	4.7	164
5	Multiplex PCR Assay for Detection and Identification of <i>Clostridium botulinum</i> Types A, B, E, and F in Food and Fecal Material. Applied and Environmental Microbiology, 2001, 67, 5694-5699.	3.1	153
6	The ubiquitous nature of <scp><i>L</i></scp> <i>isteria monocytogenes</i> clones: a largeâ€scale <scp>M</scp> ultilocus <scp>S</scp> equence <scp>T</scp> yping study. Environmental Microbiology, 2014, 16, 405-416.	3.8	130
7	An 8-Year Surveillance of the Diversity and Persistence of Listeria monocytogenes in a Chilled Food Processing Plant Analyzed by Amplified Fragment Length Polymorphism. Journal of Food Protection, 2007, 70, 1866-1873.	1.7	85
8	Susceptibility of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures. LWT - Food Science and Technology, 2007, 40, 1041-1048.	5.2	71
9	Comparative Phenotypic and Genotypic Analysis of Swiss and Finnish Listeria monocytogenes Isolates with Respect to Benzalkonium Chloride Resistance. Frontiers in Microbiology, 2017, 8, 397.	3.5	71
10	Two-Component-System Histidine Kinases Involved in Growth of Listeria monocytogenes EGD-e at Low Temperatures. Applied and Environmental Microbiology, 2015, 81, 3994-4004.	3.1	59
11	Occurrence, Persistence, and Contamination Routes of Listeria monocytogenes Genotypes on Three Finnish Dairy Cattle Farms: a Longitudinal Study. Applied and Environmental Microbiology, 2018, 84, .	3.1	55
12	Yersinia pekkanenii sp. nov International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2363-2367.	1.7	50
13	Listeria monocytogenes Contamination in Pork Can Originate from Farms. Journal of Food Protection, 2010, 73, 641-648.	1.7	49
14	Phenotypic and transcriptomic analyses of Sigma L-dependent characteristics in Listeria monocytogenes EGD-e. Food Microbiology, 2012, 32, 152-164.	4.2	43
15	Phage lysin that specifically eliminates Clostridium botulinum Group I cells. Scientific Reports, 2020, 10, 21571.	3.3	43
16	Yersinia nurmii sp. nov International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2368-2372.	1.7	38
17	Role of csp genes in NaCl, pH, and ethanol stress response and motility in Clostridium botulinum ATCC 3502. Food Microbiology, 2015, 46, 463-470.	4.2	36
18	Heat Resistance Mediated by pLM58 Plasmid-Borne ClpL in Listeria monocytogenes. MSphere, 2017, 2, .	2.9	34

Hannu Juhani Korkeala

#	Article	IF	CITATIONS
19	MdrL, a major facilitator superfamily efflux pump of Listeria monocytogenes involved in tolerance to benzalkonium chloride. Applied Microbiology and Biotechnology, 2019, 103, 1339-1350.	3.6	34
20	Enteropathogenic <i>Yersinia</i> in the Pork Production Chain: Challenges for Control. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 1165-1191.	11.7	30
21	Evaluation of normalization reference genes for RT-qPCR analysis of spoOA and four sporulation sigma factor genes in Clostridium botulinum Group I strain ATCC 3502. Anaerobe, 2014, 26, 14-19.	2.1	29
22	Screening of the two-component-system histidine kinases of Listeria monocytogenes EGD-e. LiaS is needed for growth under heat, acid, alkali, osmotic, ethanol and oxidative stresses. Food Microbiology, 2017, 65, 36-43.	4.2	28
23	MouR controls the expression of the Listeria monocytogenes Agr system and mediates virulence. Nucleic Acids Research, 2018, 46, 9338-9352.	14.5	26
24	Alternative Sigma Factors SigF, SigE, and SigG Are Essential for Sporulation in Clostridium botulinum ATCC 3502. Applied and Environmental Microbiology, 2014, 80, 5141-5150.	3.1	25
25	Transcriptomic Analysis of (Group I) Clostridium botulinum ATCC 3502 Cold Shock Response. PLoS ONE, 2014, 9, e89958.	2.5	24
26	Positive Regulation of Botulinum Neurotoxin Gene Expression by CodY in Clostridium botulinum ATCC 3502. Applied and Environmental Microbiology, 2014, 80, 7651-7658.	3.1	23
27	<i>Yersinia</i> spp. in Wild Rodents and Shrews in Finland. Vector-Borne and Zoonotic Diseases, 2017, 17, 303-311.	1.5	23
28	High prevalence of pathogenic Yersinia enterocolitica in pig cheeks. Food Microbiology, 2014, 43, 50-52.	4.2	21
29	Development of Human-Like scFv-Fc Neutralizing Botulinum Neurotoxin E. PLoS ONE, 2015, 10, e0139905.	2.5	21
30	High prevalence of Clostridium botulinum in vegetarian sausages. Food Microbiology, 2020, 91, 103512.	4.2	21
31	Growth of Yersinia pseudotuberculosis Strains at Different Temperatures, pH Values, and NaCl and Ethanol Concentrations. Journal of Food Protection, 2018, 81, 142-149.	1.7	20
32	Insights into the Phylogeny and Evolution of Cold Shock Proteins: From Enteropathogenic Yersinia and Escherichia coli to Eubacteria. International Journal of Molecular Sciences, 2019, 20, 4059.	4.1	20
33	Processing plant and machinery sanitation and hygiene practices associate with Listeria monocytogenes occurrence in ready-to-eat fish products. Food Microbiology, 2019, 82, 455-464.	4.2	20
34	Neurotoxin synthesis is positively regulated by the sporulation transcription factor SpoOA in <i>Clostridium botulinum</i> type E. Environmental Microbiology, 2017, 19, 4287-4300.	3.8	17
35	Mobile Elements Harboring Heavy Metal and Bacitracin Resistance Genes Are Common among Listeria monocytogenes Strains Persisting on Dairy Farms. MSphere, 2021, 6, e0038321.	2.9	17
36	Strain Variability of <i>Listeria monocytogenes</i> under NaCl Stress Elucidated by a High-Throughput Microbial Growth Data Assembly and Analysis Protocol. Applied and Environmental Microbiology, 2020, 86, .	3.1	15

3

#	Article	IF	CITATIONS
37	Alternative Sigma Factor Ï f ^E Has an Important Role in Stress Tolerance of Yersinia pseudotuberculosis IP32953. Applied and Environmental Microbiology, 2013, 79, 5970-5977.	3.1	14
38	Genomic Epidemiology and Phenotyping Reveal on-Farm Persistence and Cold Adaptation of Raw Milk Outbreak-Associated Yersinia pseudotuberculosis. Frontiers in Microbiology, 2019, 10, 1049.	3.5	13
39	Neutralization of Botulinum Neurotoxin Type E by a Humanized Antibody. Toxins, 2016, 8, 257.	3.4	12
40	Sporulation Strategies and Potential Role of the Exosporium in Survival and Persistence of Clostridium botulinum. International Journal of Molecular Sciences, 2022, 23, 754.	4.1	12
41	Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502. PLoS ONE, 2017, 12, e0176944.	2.5	11
42	Prevalence and Dynamics of Pathogenic <i>Yersinia enterocolitica</i> 4/O:3 Among Finnish Piglets, Fattening Pigs, and Sows. Foodborne Pathogens and Disease, 2019, 16, 831-839.	1.8	10
43	Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum. Research in Microbiology, 2015, 166, 344-352.	2.1	9
44	A European-wide dataset to uncover adaptive traits of Listeria monocytogenes to diverse ecological niches. Scientific Data, 2022, 9, 190.	5.3	9
45	Changes in Transcriptome of Yersinia pseudotuberculosis IP32953 Grown at 3 and 28°C Detected by RNA Sequencing Shed Light on Cold Adaptation. Frontiers in Cellular and Infection Microbiology, 2018, 8, 416.	3.9	8
46	Functional csdA is needed for effective adaptation and initiation of growth of Clostridium botulinum ATCC 3502 at suboptimal temperature. International Journal of Food Microbiology, 2015, 208, 51-57.	4.7	7
47	Strengthening the efficacy of official food control improves Listeria monocytogenes prevention in fish-processing plants. Scientific Reports, 2018, 8, 13105.	3.3	7
48	Role of DEAD-box RNA helicase genes in the growth of Yersinia pseudotuberculosis IP32953 under cold, pH, osmotic, ethanol and oxidative stresses. PLoS ONE, 2019, 14, e0219422.	2.5	6
49	Transcriptomic and Phenotypic Analyses of the Sigma B-Dependent Characteristics and the Synergism between Sigma B and Sigma L in Listeria monocytogenes EGD-e. Microorganisms, 2020, 8, 1644.	3.6	6
50	Large Diversity of Porcine <i>Yersinia enterocolitica</i> 4/O:3 in Eight European Countries Assessed by Multiple-Locus Variable-Number Tandem-Repeat Analysis. Foodborne Pathogens and Disease, 2016, 13, 289-295.	1.8	4
51	Prudent Antimicrobial Use Is Essential to Prevent the Emergence of Antimicrobial Resistance in Yersinia enterocolitica 4/O:3 Strains in Pigs. Frontiers in Microbiology, 2022, 13, 841841.	3.5	3
52	Introducing Scientific Training into the Veterinary Curriculum of the University of Helsinki. Journal of Veterinary Medical Education, 2009, 36, 83-88.	0.6	1
53	Use of Meat Inspection Data. , 0, , 667-673.		1

54 Official Control: B. Organization of Official Control. , 2014, , 556-561.

0