Sanjaya Lohani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7515462/publications.pdf

Version: 2024-02-01

933447 1199594 16 781 10 12 citations h-index g-index papers 16 16 16 1044 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	On the Experimental Feasibility of Quantum State Reconstruction via Machine Learning. IEEE Transactions on Quantum Engineering, 2021, 2, 1-10.	4.9	12
2	Spatial Mode Correction of Single Photons Using Machine Learning. Advanced Quantum Technologies, 2021, 4, 2000103.	3.9	19
3	Machine learning pipeline for quantum state estimation with incomplete measurements. Machine Learning: Science and Technology, 2021, 2, 035014.	5.0	14
4	Improving application performance with biased distributions of quantum states. Physical Review Research, 2021, 3, .	3.6	12
5	Bit-Error Rate Reduction of Free-Space Optical ON-OFF Keying with Atmospheric Effects. , 2021, , .		O
6	Generative machine learning for robust free-space communication. Communications Physics, 2020, 3, .	5. 3	18
7	Machine learning assisted quantum state estimation. Machine Learning: Science and Technology, 2020, 1, 035007.	5.0	48
8	Free-Space Optical ON-OFF Keying Communications with Deep Learning. , 2020, , .		3
9	Coherent optical communications enhanced by machine intelligence. Machine Learning: Science and Technology, 2020, 1, 035006.	5.0	5
10	Robust Free Space OAM Communications with Unsupervised Machine Learning. , 2019, , .		4
11	Dispersion characterization and pulse prediction with machine learning. OSA Continuum, 2019, 2, 3438.	1.8	11
12	Artificial Neural Networks for Turbulence Correction of Structured Light. , 2019, , .		0
13	Turbulence correction with artificial neural networks. Optics Letters, 2018, 43, 2611.	3.3	100
14	On the use of deep neural networks in optical communications. Applied Optics, 2018, 57, 4180.	1.8	74
15	Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 439-459.	1.1	445
16	Deep learning as a tool to distinguish between high orbital angular momentum optical modes. Proceedings of SPIE, 2016, , .	0.8	16