
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7515291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Medicine, 2004, 10, 145-147.	30.7	1,852
2	Normalization of the Vasculature for Treatment of Cancer and Other Diseases. Physiological Reviews, 2011, 91, 1071-1121.	28.8	1,275
3	Lymphatic Metastasis in the Absence of Functional Intratumor Lymphatics. Science, 2002, 296, 1883-1886.	12.6	869
4	Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17561-17566.	7.1	800
5	Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation. Cancer Cell, 2004, 6, 553-563.	16.8	789
6	Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Medicine, 2009, 15, 1219-1223.	30.7	692
7	Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15101-15108.	7.1	677
8	Mosaic blood vessels in tumors: Frequency of cancer cells in contact with flowing blood. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14608-14613.	7.1	595
9	Dissecting tumour pathophysiology using intravital microscopy. Nature Reviews Cancer, 2002, 2, 266-276.	28.4	576
10	Effect of Vascular Normalization by Antiangiogenic Therapy on Interstitial Hypertension, Peritumor Edema, and Lymphatic Metastasis: Insights from a Mathematical Model. Cancer Research, 2007, 67, 2729-2735.	0.9	556
11	Mechanical compression drives cancer cells toward invasive phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 911-916.	7.1	507
12	Fluid forces control endothelial sprouting. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15342-15347.	7.1	432
13	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	7.2	429
14	During angiogenesis, vascular endothelial growth factor regulate natural killer cell adhesion to tumor endothelium. Nature Medicine, 1996, 2, 992-997.	30.7	425
15	Surrogate Markers for Antiangiogenic Therapy and Dose-Limiting Toxicities for Bevacizumab With Radiation and Chemotherapy: Continued Experience of a Phase I Trial in Rectal Cancer Patients. Journal of Clinical Oncology, 2005, 23, 8136-8139.	1.6	410
16	Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends in Cancer, 2018, 4, 292-319.	7.4	389
17	Tumor Microvasculature and Microenvironment: Novel Insights Through Intravital Imaging in Pre-Clinical Models. Microcirculation, 2010, 17, 206-225.	1.8	376
18	Physical traits of cancer. Science, 2020, 370, .	12.6	371

#	Article	IF	CITATIONS
19	Micro-Environmental Mechanical Stress Controls Tumor Spheroid Size and Morphology by Suppressing Proliferation and Inducing Apoptosis in Cancer Cells. PLoS ONE, 2009, 4, e4632.	2.5	368
20	Diffusion of Particles in the Extracellular Matrix: The Effect of Repulsive Electrostatic Interactions. Biophysical Journal, 2010, 99, 1342-1349.	0.5	340
21	Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4476-4481.	7.1	287
22	Edema Control by Cediranib, a Vascular Endothelial Growth Factor Receptor–Targeted Kinase Inhibitor, Prolongs Survival Despite Persistent Brain Tumor Growth in Mice. Journal of Clinical Oncology, 2009, 27, 2542-2552.	1.6	285
23	Solid stress and elastic energy as measures of tumour mechanopathology. Nature Biomedical Engineering, 2017, 1, .	22.5	280
24	Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Research, 2002, 62, 6831-6.	0.9	278
25	Solid stress generated by spheroid growth estimated using a linear poroelasticity modelâ~†. Microvascular Research, 2003, 66, 204-212.	2.5	254
26	Impaired lymphatic contraction associated with immunosuppression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18784-18789.	7.1	246
27	Intussusceptive Microvascular Growth in a Human Colon Adenocarcinoma Xenograft: A Novel Mechanism of Tumor Angiogenesis. Microvascular Research, 1996, 51, 260-272.	2.5	244
28	Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed?. Lancet Oncology, The, 2007, 8, 444-448.	10.7	230
29	Modeling the flow of dense suspensions of deformable particles in three dimensions. Physical Review E, 2007, 75, 066707.	2.1	217
30	Biomimetic Autoseparation of Leukocytes from Whole Blood in a Microfluidic Device. Analytical Chemistry, 2005, 77, 933-937.	6.5	197
31	Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nature Methods, 2010, 7, 655-660.	19.0	192
32	Vasculogenic Mimicry: How Convincing, How Novel, and How Significant?. American Journal of Pathology, 2000, 156, 383-388.	3.8	180
33	The Lymphatic System in Disease Processes and Cancer Progression. Annual Review of Biomedical Engineering, 2016, 18, 125-158.	12.3	172
34	NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. Journal of Clinical Investigation, 2005, 115, 1816-1827.	8.2	167
35	Cancer and inflammation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1370.	6.6	166
36	Combining microenvironment normalization strategies to improve cancer immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3728-3737.	7.1	163

#	Article	IF	CITATIONS
37	Scaling rules for diffusive drug delivery in tumor and normal tissues. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1799-1803.	7.1	159
38	Diffusion Anisotropy in Collagen Gels and Tumors: The Effect of Fiber Network Orientation. Biophysical Journal, 2010, 99, 3119-3128.	0.5	157
39	Compression of Pancreatic Tumor Blood Vessels by Hyaluronan Is Caused by Solid Stress and Not Interstitial Fluid Pressure. Cancer Cell, 2014, 26, 14-15.	16.8	155
40	Red Blood Cells Initiate Leukocyte Rolling in Postcapillary Expansions: A Lattice Boltzmann Analysis. Biophysical Journal, 2003, 85, 208-222.	0.5	133
41	Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Research, 2003, 63, 5188-93.	0.9	132
42	Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nature Biomedical Engineering, 2019, 3, 230-245.	22.5	127
43	Quantitative Assessment of Whole-Body Tumor Burden in Adult Patients with Neurofibromatosis. PLoS ONE, 2012, 7, e35711.	2.5	126
44	Angiopoietin-2 Interferes with Anti-VEGFR2–Induced Vessel Normalization and Survival Benefit in Mice Bearing Gliomas. Clinical Cancer Research, 2010, 16, 3618-3627.	7.0	125
45	Vascular regulation of antitumor immunity. Science, 2019, 365, 544-545.	12.6	124
46	A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood, 2003, 102, 2555-2561.	1.4	122
47	In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nature Methods, 2009, 6, 143-145.	19.0	120
48	Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood, 2011, 118, 4740-4749.	1.4	119
49	Effect of Vascular Endothelial Growth Factor on Cultured Endothelial Cell Monolayer Transport Properties. Microvascular Research, 2000, 59, 265-277.	2.5	118
50	Red Blood Cells Augment Leukocyte Rolling in a Virtual Blood Vessel. Biophysical Journal, 2002, 83, 1834-1841.	0.5	117
51	Role of erythrocytes in leukocyte-endothelial interactions: mathematical model and experimental validation. Biophysical Journal, 1996, 71, 466-478.	0.5	113
52	Particulate Nature of Blood Determines Macroscopic Rheology: A 2-D Lattice Boltzmann Analysis. Biophysical Journal, 2005, 88, 1635-1645.	0.5	110
53	Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discovery Today, 2003, 8, 396-403.	6.4	108
54	Mosaic Tumor Vessels: Cellular Basis and Ultrastructure of Focal Regions Lacking Endothelial Cell Markers. Cancer Research, 2005, 65, 5740-5749.	0.9	104

#	Article	IF	CITATIONS
55	Imaging the lymphatic system. Microvascular Research, 2014, 96, 55-63.	2.5	101
56	PDGF-C Induces Maturation of Blood Vessels in a Model of Glioblastoma and Attenuates the Response to Anti-VEGF Treatment. PLoS ONE, 2009, 4, e5123.	2.5	99
57	Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. Npj Digital Medicine, 2021, 4, 87.	10.9	97
58	Leukocyte-endothelial adhesion and angiogenesis in tumors. Cancer and Metastasis Reviews, 1996, 15, 195-204.	5.9	95
59	Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies. Biophysical Journal, 1994, 67, 889-895.	0.5	93
60	Decorin Inhibits Endothelial Migration and Tube-like Structure Formation: Role of Thrombospondin-1. Microvascular Research, 2001, 62, 26-42.	2.5	93
61	Vascular Morphogenesis and Remodeling in a Human Tumor Xenograft. Circulation Research, 2001, 89, 732-739.	4.5	93
62	Cancer Cell–Associated MT1-MMP Promotes Blood Vessel Invasion and Distant Metastasis in Triple-Negative Mammary Tumors. Cancer Research, 2011, 71, 4527-4538.	0.9	93
63	Leaky vessels? Call Ang1!. Nature Medicine, 2000, 6, 131-132.	30.7	89
64	Selectin- and integrin-mediated T-lymphocyte rolling and arrest on TNF-alpha-activated endothelium: augmentation by erythrocytes. Biophysical Journal, 1995, 69, 2131-2138.	0.5	88
65	Regorafenib combined with PD1 blockade increases CD8 T-cell infiltration by inducing CXCL10 expression in hepatocellular carcinoma. , 2020, 8, e001435.		87
66	Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integrative Biology (United Kingdom), 2012, 4, 857.	1.3	85
67	Blood Cell Interactions and Segregation in Flow. Annals of Biomedical Engineering, 2008, 36, 534-544.	2.5	82
68	Vascular Morphogenesis and Remodeling in a Model of Tissue Repair. Circulation Research, 2001, 89, 723-731.	4.5	79
69	Cancer cell glycocalyx mediates mechanotransduction and flow-regulated invasion. Integrative Biology (United Kingdom), 2013, 5, 1334-1343.	1.3	78
70	Determinants of Leukocyte Margination in Rectangular Microchannels. PLoS ONE, 2009, 4, e7104.	2.5	77
71	Mechanobiological oscillators control lymph flow. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10938-10943.	7.1	73
72	Experimental and computational analyses reveal dynamics of tumor vessel cooption and optimal treatment strategies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2662-2671.	7.1	73

#	Article	IF	CITATIONS
73	Reengineering the Tumor Vasculature: Improving Drug Delivery and Efficacy. Trends in Cancer, 2018, 4, 258-259.	7.4	72
74	Quantifying solid stress and elastic energy from excised or in situ tumors. Nature Protocols, 2018, 13, 1091-1105.	12.0	70
75	Solid stress facilitates spheroid formation: potential involvement of hyaluronan. British Journal of Cancer, 2002, 86, 947-953.	6.4	69
76	Mechanisms of Leukotriene B 4 –Triggered Monocyte Adhesion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1761-1767.	2.4	66
77	Lymphatic vessels in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 111-124.	6.6	66
78	Lattice-Boltzmann simulation of blood flow in digitized vessel networks. Computers and Mathematics With Applications, 2008, 55, 1594-1600.	2.7	64
79	Stress granule-associated protein G3BP2 regulates breast tumor initiation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1033-1038.	7.1	60
80	Neovascularization After Irradiation: What is the Source of Newly Formed Vessels in Recurring Tumors?. Journal of the National Cancer Institute, 2012, 104, 899-905.	6.3	58
81	Lattice Boltzmann modelling of blood cell dynamics. International Journal of Computational Fluid Dynamics, 2008, 22, 481-492.	1.2	55
82	Erythrocytes Enhance Lymphocyte Rolling and Arrest in Vivo. Microvascular Research, 2000, 59, 316-322.	2.5	52
83	Antibody-Directed Effector Cell Therapy of Tumors: Analysis and Optimization Using a Physiologically Based Pharmacokinetic Model. Neoplasia, 2002, 4, 449-463.	5.3	50
84	Lack of Telopeptides in Fibrillar Collagen I Promotes the Invasion of a Metastatic Breast Tumor Cell Line. Cancer Research, 2005, 65, 5674-5682.	0.9	50
85	Differential Transplantability of Tumor-Associated Stromal Cells. Cancer Research, 2004, 64, 5920-5924.	0.9	49
86	Differential Gene Expression in Metastasizing Cells Shed from Kidney Tumors. Cancer Research, 2004, 64, 2469-2473.	0.9	47
87	Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio, 2022, 13, 100208.	5.5	47
88	Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip. Lab on A Chip, 2011, 11, 2941.	6.0	45
89	Methicillin-resistant <i>Staphylococcus aureus</i> causes sustained collecting lymphatic vessel dysfunction. Science Translational Medicine, 2018, 10, .	12.4	45
90	RhoA mediates flow-induced endothelial sprouting in a 3-D tissue analogue of angiogenesis. Lab on A Chip, 2012, 12, 5000.	6.0	44

#	Article	IF	CITATIONS
91	Paradoxical Effects of PDGF-BB Overexpression in Endothelial Cells on Engineered Blood Vessels In Vivo. American Journal of Pathology, 2009, 175, 294-302.	3.8	43
92	Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment. Intravital, 2012, 1, 60-68.	2.0	43
93	Influence of erythrocyte aggregation on leukocyte margination in postcapillary expansions: A lattice Boltzmann analysis. Physica A: Statistical Mechanics and Its Applications, 2006, 362, 191-196.	2.6	42
94	Non-Uniform Plasma Leakage Affects Local Hematocrit and Blood Flow: Implications for Inflammation and Tumor Perfusion. Annals of Biomedical Engineering, 2007, 35, 2121-2129.	2.5	42
95	In Vivo Imaging of Tumors. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5452-pdb.prot5452.	0.3	40
96	Mapping Physical Tumor Microenvironment and Drug Delivery. Clinical Cancer Research, 2019, 25, 2024-2026.	7.0	37
97	Analysis of lymphocyte activation and proliferation by video microscopy and digital imaging. Cytometry, 1993, 14, 772-782.	1.8	34
98	Placental growth factor promotes tumour desmoplasia and treatment resistance in intrahepatic cholangiocarcinoma. Gut, 2022, 71, 185-193.	12.1	34
99	Mechanobiology of lymphatic contractions. Seminars in Cell and Developmental Biology, 2015, 38, 67-74.	5.0	33
100	In silico dynamics of COVID-19 phenotypes for optimizing clinical management. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
101	Effect of Local Anti-VEGF Antibody Treatment on Tumor Microvessel Permeability. Microvascular Research, 1999, 57, 357-362.	2.5	32
102	Systemic Distribution and Tumor Localization of Adoptively Transferred Lymphocytes in Mice: Comparison with Physiologically Based Pharmacokinetic Model. Neoplasia, 2002, 4, 3-8.	5.3	29
103	Kinetics of Placenta Growth Factor/Vascular Endothelial Growth Factor Synergy in Endothelial Hydraulic Conductivity and Proliferation. Microvascular Research, 2001, 61, 203-210.	2.5	28
104	Heparan sulfate proteoglycans mediate renal carcinoma metastasis. International Journal of Cancer, 2016, 139, 2791-2801.	5.1	28
105	PDGF and microvessel wall remodeling in adult rat lung: imaging PDGF-AA and PDGF-Rα molecules in progenitor smooth muscle cells developing in experimental pulmonary hypertension. Cell and Tissue Research, 2006, 326, 759-769.	2.9	27
106	Flow-induced HDAC1 phosphorylation and nuclear export in angiogenic sprouting. Scientific Reports, 2016, 6, 34046.	3.3	27
107	Synchronization and Random Triggering of Lymphatic Vessel Contractions. PLoS Computational Biology, 2016, 12, e1005231.	3.2	26
108	In vivo compression and imaging in mouse brain to measure the effects of solid stress. Nature Protocols, 2020, 15, 2321-2340.	12.0	24

#	Article	IF	CITATIONS
109	A model for the kinetics of homotypic cellular aggregation under static conditions. Biophysical Journal, 1997, 72, 51-64.	0.5	23
110	Lateral View Flow System for Studies of Cell Adhesion and Deformation under Flow Conditions. BioTechniques, 2001, 30, 388-394.	1.8	21
111	Secretory leukocyte protease inhibitor (SLPI) as a potential target for inhibiting metastasis of triple-negative breast cancers. Oncotarget, 2017, 8, 108292-108302.	1.8	19
112	The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations. Scientific Reports, 2019, 9, 10649.	3.3	17
113	Can We Identify Predictive Biomarkers for Antiangiogenic Therapy of Cancer Using Mathematical Modeling?. Journal of the National Cancer Institute, 2013, 105, 762-765.	6.3	15
114	The cancer cell glycocalyx proteoglycan Glypican-1 mediates interstitial flow mechanotransduction to enhance cell migration and metastasis. Biorheology, 2019, 56, 151-161.	0.4	15
115	Analysis of lymphocyte aggregation using digital image analysis. Journal of Immunological Methods, 1993, 166, 11-25.	1.4	14
116	A multi-scale model for determining the effects of pathophysiology and metabolic disorders on tumor growth. Scientific Reports, 2020, 10, 3025.	3.3	14
117	Is vasculogenesis crucial for the regrowth of irradiated tumours?. Nature Reviews Cancer, 2011, 11, 532-532.	28.4	11
118	SLPI: a new target for stopping metastasis. Aging, 2018, 10, 13-14.	3.1	11
119	Is vasculogenesis crucial for the regrowth of irradiated tumours?. Nature Reviews Cancer, 2011, 11, 532-532.	28.4	10
120	Measuring Angiogenesis and Hemodynamics in Mice. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot073916.	0.3	10
121	Self-assembly of vascularized tissue to support tumor explants in vitro. Integrative Biology (United) Tj ETQq1 1 0.	.784314 r 1.3	gBT /Overlo
122	Vascular beds maintain pancreatic tumour explants for <i>ex vivo</i> drug screening. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e318-e322.	2.7	10
123	Lymphatic function measurements influenced by contrast agent volume and body position. JCI Insight, 2018, 3, .	5.0	10
124	A protocol for phenotypic detection and characterization of vascular cells of different origins in a lung neovascularization model in rodents. Nature Protocols, 2008, 3, 388-397.	12.0	9
125	Strategies to minimize heterogeneity and optimize clinical trials in Acute Respiratory Distress Syndrome (ARDS): Insights from mathematical modelling. EBioMedicine, 2022, 75, 103809.	6.1	9
126	Dynamics of tissue topology during cancer invasion and metastasis. Physical Biology, 2013, 10, 065003.	1.8	8

#	Article	IF	CITATIONS
127	Transparent Window Models and Intravital Microscopy: Imaging Gene Expression, Physiological Function, and Drug Delivery in Tumors. , 0, , 647-671.		8
128	Mammary Fat Pad Tumor Preparation in Mice: Figure 1 Cold Spring Harbor Protocols, 2012, 2012, pdb.prot071514.	0.3	7
129	Implantable tissue isolation chambers for analyzing tumor dynamics in vivo. Lab on A Chip, 2016, 16, 1840-1851.	6.0	7
130	Effects of Low Intensity Continuous Ultrasound (LICU) on Mouse Pancreatic Tumor Explants. Applied Sciences (Switzerland), 2017, 7, 1275.	2.5	7
131	Mechanosensing tensile solid stresses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21960-21962.	7.1	7
132	Transparent Window Models and Intravital Microscopy: Imaging Gene Expression, Physiological Function and Therapeutic Effects in Tumors. , 2011, , 641-679.		7
133	Measuring Vascular Permeability in Mice. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot074344-pdb.prot074344.	0.3	6
134	Reply to Davis: Nitric oxide regulates lymphatic contractions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E106.	7.1	5
135	Glycocalyx mechanotransduction mechanisms are involved in renal cancer metastasis. Matrix Biology Plus, 2022, 13, 100100.	3.5	5
136	The effects of gravity and compression on interstitial fluid transport in the lower limb. Scientific Reports, 2022, 12, 4890.	3.3	5
137	In Vitro and In Vivo Quantification of Adhesion Between Leukocytes and Vascular Endothelium. , 1999, 18, 553-576.		4
138	Lymphangiography of the Mouse Ear. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot072116.	0.3	4
139	Microfluidic Model of Angiogenic Sprouting. Methods in Molecular Biology, 2015, 1214, 243-254.	0.9	4
140	Measuring Interstitial Diffusion, Convection, and Binding Parameters in Mouse Tumors. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot075721.	0.3	3
141	A mechanobiological mathematical model of liver metabolism. Biotechnology and Bioengineering, 2020, 117, 2861-2874.	3.3	3
142	Modeling Tumor Blood Vessel Dynamics. Lecture Notes on Mathematical Modelling in the Life Sciences, 2013, , 117-147.	0.4	3
143	Pancreatic Tumor Preparation in Mice. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot072363.	0.3	2
144	Rabbit Ear Chambers. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot070045-pdb.prot070045.	0.3	2

#	Article	IF	CITATIONS
145	Corneal Pocket Assay in Rabbits: Figure 1 Cold Spring Harbor Protocols, 2012, 2012, pdb.prot070052.	0.3	2
146	Vascular Normalization to Improve Treatment of COVID-19: Lessons from Treatment of Cancer. Clinical Cancer Research, 2021, 27, 2706-2711.	7.0	2
147	Abstract LB-347: Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. , 2016, , .		2
148	Lymphangiography of the Mouse Tail. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot072108.	0.3	1
149	Liver Tumor Preparation in Mice. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot072371.	0.3	1
150	Lung Window Preparation in Mice. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072678.	0.3	1
151	Measuring Leukocyte-Endothelial Interactions in Mice. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot075085.	0.3	1
152	Measuring Interstitial pH and pO ₂ in Mouse Tumors. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot075713.	0.3	1
153	Fluid Mechanics and Transport in Tumors. Science Policy Reports, 2016, , 73-88.	0.1	1
154	Compressionâ€induced cell distension stimulates coordinated migration of mammary carcinoma cells. FASEB Journal, 2010, 24, 39.3.	0.5	1
155	Determinants of Leukocyte Margination in Rectangular Microchannels. FASEB Journal, 2010, 24, 974.7.	0.5	1
156	Abstract 2721: Accurate prediction of tumor growth and doubling times for triple negative breast cancer (TNBC) allows for patient-specific assessment of tumor aggressiveness. Cancer Research, 2022, 82, 2721-2721.	0.9	1
157	Tumor Imaging. , 0, , 277-309.		0
158	Optical Microscopy in Small Animal Research. , 0, , 183-190.		0
159	Mammary Fat Pad Chamber Preparation in Mice. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot071506.	0.3	0
160	Residual Stresses in Solid Tumors: Implications to Tumor Growth and Drug Delivery. , 2012, , .		0
161	IMST-40. REPROGRAMMING OF THE TUMOR IMMUNE MICROENVIRONMENT BY AN ANG-2/VEGF BISPECIFIC ANTIBODY DELAYS TUMOR GROWTH AND PROLONGS SURVIVAL IN PRECLINICAL GBM MODELS. Neuro-Oncology, 2016, 18, vi95-vi95.	1.2	0
162	BSCI-10. NEUROLOGICAL DYSFUNCTION CAUSED BY BRAIN TUMOR-GENERATED SOLID STRESS IS REVERSED BY LITHIUM. Neuro-Oncology Advances, 2019, 1, i2-i3.	0.7	0

#	Article	IF	CITATIONS
163	Wrapping and Tapping Anastomosis between Engrafted Endothelial Networks and Host Vasculature. FASEB Journal, 2010, 24, 235.5.	0.5	0
164	A mathematical framework for predicting oxygen transport and vessel remodeling in tumors. FASEB Journal, 2010, 24, 750.3.	0.5	0
165	Modeling Structural and Functional Adaptation of Tumor Vessel Networks During Antiangiogenic Therapy. , 2012, , 213-233.		0
166	Laser Scanning Methodologies for Measuring RBC Velocity, Flux, Hematocrit and Shear Rate in Vascular Networks. , 2012, , 417-431.		0
167	Perivascular cell dynamics during wrappingâ€andâ€ŧapping anastomosis. FASEB Journal, 2012, 26, 683.5.	0.5	Ο
168	Vascular adaptation and network efficiency. FASEB Journal, 2012, 26, 682.2.	0.5	0
169	Endothelial dynamics during sprouting morphogenesis. FASEB Journal, 2013, 27, 688.2.	0.5	Ο
170	Abstract LB-348: Evolution of physical forces in the tumor microenvironment and implications for therapeutic resistance , 2013, , .		0
171	Abstract 5796: Heparan sulfate proteoglycans mediate tumor cell invasion and metastasis. , 2017, , .		Ο
172	Abstract 3987: Solid stress and elastic energy as measures of tumor mechanopathology. , 2017, , .		0
173	Surface glycocalyx and glypicanâ€1 mediate tumor cell metastasis. FASEB Journal, 2018, 32, 281.5.	0.5	0
174	Abstract 95: Heparan sulfate and glypican-1 mediate renal carcinoma metastasis. , 2018, , .		0
175	Optimizing Vessel Normalization and Chemotherapies to Control Tumor Growth. FASEB Journal, 2020, 34, 1-1.	0.5	Ο
176	An Agentâ€Based Model to Investigate Cellular Mechanisms of Vasculogenesis. FASEB Journal, 2020, 34, 1-1.	0.5	0
177	Analysis of Systemic Transport Barriers for the Activation of Antiâ€ŧumor Immunity. FASEB Journal, 2020, 34, 1-1.	0.5	0
178	The Effects of Valve Leaflet Mechanics on Lymphatic Pumping Assessed Using Numerical Simulations. FASEB Journal, 2020, 34, 1-1.	0.5	0
179	Hyaluronic Acid Receptorâ€RHAMM Mediates Renal Carcinoma Metastasis. FASEB Journal, 2020, 34, 1-1.	0.5	0
180	TMOD-37. IN VIVO COMPRESSION AND IMAGING FOR CAUSAL STUDIES OF MECHANICAL FORCES IN THE BRAIN. Neuro-Oncology, 2020, 22, ii235-ii236.	1.2	0

#	Article	IF	CITATIONS
181	Abstract 474: Integrating imaging and multi-omics data to elucidate racial differences in breast tumor biology to optimize precision oncology approaches and patient outcome. Cancer Research, 2022, 82, 474-474.	0.9	Ο
182	Abstract 1917: Accurate modeling of HER2 positive breast cancer disease progression with a biophysical modeling software. Cancer Research, 2022, 82, 1917-1917.	0.9	0
183	Abstract 1217: Spatio-temporal modeling of the tumor microenvironment for prediction of patient-specific response to chemotherapy. Cancer Research, 2022, 82, 1217-1217.	0.9	Ο